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Contributed Discussion on Article by Pratola∗

Comment by Oksana A. Chkrebtii1

Abstract. Pratola (2016) introduces a novel proposal mechanism for the Metro-
polis–Hastings step of a Markov chain Monte Carlo (MCMC) sampler that allows
efficient traversal of the space of latent stochastic partitions defined by binary
regression trees. Here we discuss two considerations: the first is the use of the
new proposal mechanism within a population Markov chain Monte Carlo sampler
(Geyer, 1991) to further increase sampling efficiency in the presence of greatly
separated posterior modes, the second is a prior model that favors parsimony for
the problem of variable selection.

Keywords: population Markov chain Monte Carlo, model selection, Bayesian
treed regression.

We congratulate the author on an important contribution to sampling methodology
for Bayesian treed regression. The joint posterior over the binary tree partition and
model parameters is notoriously difficult to explore with existing local proposal mech-
anisms (Chipman et al., 2010; Wu et al., 2007; Gramacy and Lee, 2008). The rotation
proposal step introduced by Pratola (2016) is important because it allows movement
between disjoint high posterior density regions that arise when sampling regression tree
structures. Given that this is a very challenging sampling problem, we suggest incorpo-
rating the proposal mechanism into a sampling scheme that can quickly move between
posterior modes. We also note that improved ability to sample a possibly multimodal
posterior allows us to consider the problem of variable selection, alluded to in the first
motivating example in the paper where confounded variables tended to be added to the
model together. To overcome this issue, we propose a conditional prior specification for
the split variables that favors model parsimony.

1 Population MCMC with efficient tree proposals

Population MCMC methods (Geyer, 1991) allow both local and global transitions by
simulating a number of auxiliary MCMC chains targeting progressively tempered poste-
rior densities, and swapping their states with probability ξs. The Markov chain targeting
the untempered posterior can thus explore greatly separated regions of the parameters
space efficiently relative to a single chain. In Algorithm 1 we incorporate the proposal
of Pratola (2016) in a parallel tempering sampler targeting the posterior distribution
[τ, {(vi, ci)}, σ2, μ | y]. Symbols with subscripts in parentheses correspond to a single
chain. We use an expanded notation for the likelihood to make clear the dependence on
sampled parameters at each step. The user defines the vector of temperatures γ ∈ (0, 1]C
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Algorithm 1 Parallel tempering tree sampling algorithm using C Markov chains.

For c = 1, . . . , C construct T(c) = (τ(c), {(vi, ci)}(c)) using the algorithm of Chipman et al.
(2010), then sample σ2

(c), μ(c) from the conditional prior;
for m = 1 : M do

if ξs > U[0, 1] then
Propose a swap between the index pair (i, j) drawn from a symmetric proposal distri-
bution q(i, j), 1 ≤ i, j ≤ C, i �= j and compute the ratio,

ρ =
L(y | τ(i), {(vi, ci)}(i), σ2

(i), μ(i))
γi

L(y | τ(i), {(vi, ci)}(i), σ2
(i), μ(i))

γj

L(y | τ(j), {(vi, ci)}(j), σ2
(j), μ(j))

γj

L(y | τ(j), {(vi, ci)}(j), σ2
(j), μ(j))γi

;

if min(1, ρ) > U[0, 1] then
Swap (τ(i), {(vi, ci)}(i), σ2

(i), μ(i)) ↔ (τ(j), {(vi, ci)}(j), σ2
(j), μ(j));

end if
end if
for c = 1 : C do

if ξr > U[0, 1] then
Construct T ′

(c) = (τ ′
(c), {(v′i, c′i)}(c)) by performing a birth/death or rotation on T(c) =

(τ(c), {(vi, ci)}(c)) and compute the tempered ratio:

ρ =
π(T(c))pr(T(c)) p

1
m p2m L(y | τ(c), {(vi, ci)}(c), σ2

(c), μ(c))
γc

π(T ′
(c))pr(T

′
(c)) p

1
s p2s L(y | τ ′

(c), {(v′i, c′i)}(c), σ2
(c), μ(c))γc

;

if min(1, ρ) > U[0, 1] then
Update T(c) ← T ′

(c);
end if

end if
if ξp > U[0, 1] then

For i = 1, . . . , |T(c)|, with probability proportional to equation (7), propose (v′i, c
′
i)(c)

by a performing a perturb or perturb within change-of-variable proposal q in equation
(6), and compute the tempered ratio:

ρ =
π({(vi, ci)}(c)) q(v′i, c′i | vi, ci)L(y | τ(c), {(vi, ci)}(c), σ2

(c), μ(c))
γc

π({(v′i, c′i)}(c)) q(vi, ci | v′i, c′i)L(y | τ(c), {(v′i, c′i)}(c), σ2
(c), μ(c))γc

;

if min(1, ρ) > U[0, 1] then
Update {(vi, ci)}(c) ← {(v′i, c′i)}(c);

end if
end if
For j = 1, . . . , |M(c)|, draw μj(c) from [μj | y, τ(c), {(vi, ci)}(c), σ2

(c)]

Draw σ2
(c) from [σ2 | y, τ(c), {(vi, ci)}(c), μ(c)]

end for
Save the state, (τ(C), {(vi, ci)}(C), σ

2
(C), μ(C)), of the final chain.

end for

with the last element equal to one, and the probabilities ξr and ξp of rotating a sin-
gle tree or perturbing a single variable, respectively. Note that the sampling over all
non-swap candidate chains can be performed in parallel at every iteration.
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2 Prior for model selection

In the context of estimation, the prior of Chipman et al. (2010) acts against over-fitting
the data by penalizing the depth of internal nodes while putting uniform weights on the
possible indices, {1, . . . , d}, of the split variables v. For the problem of model selection
we instead suggest a prior that encourages parsimony, penalizing the number of distinct
variables along which splits are made. This can be accomplished by introducing prior
dependence among the split variables v. We may define the prior on vi conditionally
such that its distribution should put most of its mass on the unique values of all the less
deep nodes v1, . . . , vi−1 with the remaining prior mass uniformly distributed among all
variables on which splits have not yet been made. As with the prior of Chipman et al.
(2010), draws from the proposed model selection prior can be constructed sequentially
and have a convenient closed form. As suggested in the first motivating example, this
prior choice may result in more sharply defined posterior modes in cases when vari-
ables are confounded. However, the very efficient proposal strategy of Pratola (2016),
combined with particle MCMC may nevertheless be able to identify these modes.

References
Chipman, H., George, E., and McCulloch, R. (2010). “BART: Bayesian Additive
Regression Trees.” The Annals of Applied Statistics, 4(1): 266–298. MR2758172.
doi: http://dx.doi.org/10.1214/09-AOAS285. 929, 930, 931

Geyer, C. (1991). “Markov chain Monte Carlo maximum likelihood.” In Computing
Science and Statistics, Proceedings of the 23rd Symposium on the Interface, 156.
American Statistical Association. 929

Gramacy, R. and Lee, H. (2008). “Bayesian Treed Gaussian Process Models with
an Application to Computer Modeling.” Journal of the American Statistical As-
sociation, 103(483): 1119–1130. MR2528830. doi: http://dx.doi.org/10.1198/

016214508000000689. 929

Pratola, M. T. (2016). “Efficient Metropolis–Hastings Proposal Mechanisms for
Bayesian Regression Tree Models.” Bayesian Analysis. doi: http://dx.doi.org/

10.1214/16-BA999. 929, 931

Wu, Y., Tjelmeland, H., and West, M. (2007). “Bayesian CART: Prior Specification
and Posterior Simulation.” Journal of Computational and Graphical Statistics, 16(1):
44–66. MR2345747. doi: http://dx.doi.org/10.1198/106186007X180426. 929

http://www.ams.org/mathscinet-getitem?mr=2758172
http://dx.doi.org/10.1214/09-AOAS285
http://www.ams.org/mathscinet-getitem?mr=2528830
http://dx.doi.org/10.1198/016214508000000689
http://dx.doi.org/10.1198/016214508000000689
http://dx.doi.org/10.1214/16-BA999
http://dx.doi.org/10.1214/16-BA999
http://www.ams.org/mathscinet-getitem?mr=2345747
http://dx.doi.org/10.1198/106186007X180426


932 Contributed Discussion on Article by Pratola

Comment by Scotland Leman1 and Andrew Hoegh2

We commend Professor Pratola on the well written article “Efficient Metropolis–Has-
tings Proposal Mechanisms for Bayesian Regression Tree Models”. This paper nicely ad-
dresses the benefits of Bayesian regression tree models, outlines their typically cumber-
some MCMC convergence properties under basic proposal structures (Chipman et al.,
1998; Gramacy and Lee, 2008), and provides insights for constructing proposal mecha-
nisms for improved mixing.

While the novel tree rotation and improved rule perturbation proposals presented in
the main article lead to improved MCMC mixing behavior, we discuss an alternative
approach relying on a the multiset sampler (MSS), which is a novel data augmentation
sampler that can improve Markov chain Monte Carlo (MCMC) efficiencies even under
typically inefficient proposals (Leman et al., 2009). Using a similar notation to the
author’s, we let (T,M) define the space of tree topologies and maps, respectively. We
define a random multiset F , of size k, on (T,M) having density:

q(f |x, y) = q((t1,m1), (t2,m2), . . . , (tk,mk)|x, y) ≡ C
∑

(t,m)∈f

p(t,m|x, y), (1)

where (x, y) are data, p(·|·) is the posterior distribution on trees, and C is a normal-
izing constant. We note that the trees (k in total) in Equation (1) are arbitrarily or-
dered, and each may appear with multiplicity. The induced normalizing constant is

C =
(|T |+k−1

|T |
)−1

, where |T | < ∞ denotes the number of possible tree topologies (see

Leman et al. (2009) for details).

The multiset augmentation defined in Equation (1) defines a sum-of-trees represen-
tation, but differs from that imposed by the BART algorithm (Chipman et al., 2010).
The MSS proceeds through a Metropolis-within-Gibbs sampler that: 1) selects a tree
(t,m) at random from multiset f , 2) from (t,m), proposes (t∗,m∗), 3) replaces (t,m) in
f with (t∗,m∗) to form f∗, and 4) applies a typical Metropolis–Hastings decision rule
to move from f to f∗. While relatively simple to implement, the MSS has the ability
to explore tree spaces efficiently, even when the underlying proposal mechanisms are
relatively local. The MSS works since q(f∗|x, y) only differs from q(f |x, y) by one tree,
so f∗ will always have a reasonable chance of being accepted. In general, at least one
tree will be exploring a high probability region of the tree space at a time, while other
trees are free to explore. It should be noted that because trees are in a multiset, the
MSS does not converge to the target distribution p(T,M |x, y), but rather a related,
flatter distribution. Kim and MacEachern (2015) show how resampling from q(f |x, y)
into p(t,m|x, y) can easily recover the true tree probabilities.

We conclude by presenting an example that first appeared in Chipman et al. (1998)
which follows the model y ∼ N(μ(x1, x2), 2

2), where:
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μ(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8.0 if x1 ≤ 5.0, and x2 ∈ {A,B}
2.0 if x1 > 5.0, and x2 ∈ {A,B}
1.0 if x1 ≤ 3.0, and x2 ∈ {C,D}
5.0 if 3.0 < x1 < 7.0, and x2 ∈ {C,D}
8.0 if x1 ≥ 7.0, and x2 ∈ {C,D}.

Identical to Chipman et al. (1998), we generate 800 points by taking x1 ∼ Unif(0, 10),
and x2 ∼ Unif{A,B,C,D}. We apply their original algorithm (equivalent to an MSS
with k = 1) with their proposals (Grow/Prune/Change/Swap), and compare to the
MSS with k = 2 (k = 2 often provides an ample trade off between exploration and
exploitation). Figure 1 illustrates the integrated likelihoods found at each of 50,000
iterations.

Figure 1: The dashed line represents the integrated likelihood of the true model. Panel a:
the integrated likelihood at each iteration, using k = 1. Panel b: the integrated likelihood
at each iteration, using k = 2.

From Figure 1 (Panel a) we see that the original algorithm is trapped within local
regions of the tree space, and has converged to sets of trees very different from the true
tree (as indicated by the difference in likelihood). In contrast, from Figure 1 (Panel b)
we see that the two multiset elements take turns exploring the tree space, while the
non-exploring point samples through a local high probability part of the space. Around
iteration 5,000, the second element finds a high probability tree and sticks around this
part of the space, while the first element continues to explore. Eventually (around
iteration 25,000) the first element finds a tree that significantly improves upon the tree
found by the second element. In fact the first element found the true tree! After this
point, the first and second elements swap their roles as local and global searchers. That is
while one element explores an interesting region of tree space, the other element searches
for a new region of high probability. Such behavior prohibits local traps and enables
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an efficient search procedure. We summarize by mentioning that Professor Pratola’s
newly devised tree proposals are a nice addition to the Bayesian CART literature. In
combination with the MSS, we would expect to see even further improvements.
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Comment by Reihaneh Entezari1, Radu V. Craiu2, and
Jeffrey S. Rosenthal3

Abstract. The Likelihood Inflating Sampling Algorithm (LISA) (Entezari et al.,
2016) is a new communication-free parallel method for posterior sampling of big
datasets. In a divide and conquer strategy, LISA partitions the dataset into dif-
ferent “batches” and runs Markov Chain Monte Carlo (MCMC) methods on each
batch of data independently using different processors. The results from all pro-
cessors are then combined. In this discussion paper, we examine the performance
of LISA when applied to the Bayesian Regression Trees model with tree proposals
introduced by Pratola (2016). Our results show that LISA yields empirical distri-
bution functions which are indistinguishable from those obtained using Pratola’s
algorithm, even though it first divides the data into K batches and can thus be
used with datasets which are too large to fit into a single machine’s memory.

Keywords: Bayesian Regression Trees (BART), big data, communication-free,
Markov chain Monte Carlo (MCMC).

1 Introduction

We congratulate Matthew Pratola (henceforth, MP) for his innovative algorithm de-
signed for Bayesian Regression Tree (BART) models. The latter are often used to ana-
lyze large datasets and this can pose seriously challenges as the run time for BART can
be prohibitively slow. We discuss the use of MP’s novel algorithm together with a paral-
lel and communication-free method, the likelihood inflating sampling algorithm (LISA)
that we have recently proposed (Entezari et al., 2016) to sample from posterior distri-
butions arising from datasets which are too large to fit into a single machine’s memory.

2 Divide and conquer analysis via BART and LISA

In order to apply LISA, the data is divided into K batches and for each batch j we
compute the partial posterior πj(θ|�x(j)) ∝ p(θ)[L(θ|�x(j))]K where p(θ) is the model’s
prior and L(θ|�x(j)) is the likelihood for the data in the jth batch. Samples obtained
from each partial posterior are combined to perform inference about π(θ), the full data
posterior.

Previously, Entezari et al. (2016) applied LISA to BART using the methods proposed
in Chipman et al. (2010, 1998), and Kapelner and Bleich (2013), and concluded that a
weighted average of batch-draws that were generated with a minor modification of LISA
(modLISA), produces indistinguishable posterior distributions from the full posterior
distribution of BART.
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2Department of Statistical Sciences, University of Toronto, craiu@utstat.toronto.edu,
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In this discussion paper, we will apply modLISA to BART using the tree proposals
presented by Pratola (2016) to examine consistency in results and time savings.

We consider the Friedman’s test function (Friedman, 1991):

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

and simulate 20,000 observations y ∼ N(f(x), σ2) where σ = 0.1, and x = (x1, . . . , x10)
are uniformly drawn from (0, 1). The sample size is chosen so that we can still run
MP’s algorithm to sample the full-data posterior in reasonable time. We have used the
implementation of BART by Pratola (2016) to apply modLISA to this dataset with
K = 30 batches.

Using the data presented in Table 1 one can compare the results of 1000 posterior
samples generated from modLISA after 1000 burn-in iterations, to the SingleMachine
which ran MP’s algorithm on the full dataset. Note that we also simulated an addi-
tional 5000 observations as test data to fully compare the methods. Table 1 contains
root mean squared error (RMSE) of f(x) for both train and test data as well as the
mean σ estimate. Both methods were performed with 30% rotate proposals without any
adaptation. The results in Table 1 confirm that the parallel algorithm produces results
that are very similar to the ones produced by SingleMachine. This is in line with the
findings in Entezari et al. (2016). Table 2 shows, for each algorithm, the empirical test
data coverage of the 90% credible interval for f(x), average tree depth, total run time
and the inverse product of Test RMSE and running time which can be thought of as
a measure of computational efficiency. Interestingly, modLISA has higher coverage and
lower average tree depth than SingleMachine. Total run time is more than 10 times
faster for modLISA.

Method Train RMSE Test RMSE Mean σ̂

modLISA 0.137 0.147 0.176
SingleMachine 0.075 0.087 0.123

Table 1: Results of training data RMSE, test data RMSE and mean post burn-in σ̂ from
each method with 30% rotate proposals. There are K = 30 batches in total.

Method Test Coverage Avg tree
depth

Total Run
Time (secs)

1/(Test RMSE × Time)

modLISA 70.8 % 1.01 121.6 0.056
SingleMachine 63.7 % 2.07 1585.5 0.007

Table 2: Computational efficiency comparison between modLISA and SingleMachine.

Figure 1 compares the empirical distribution functions of f̂(x) in modLISA to Sin-
gleMachine for two different observations in the test data. As it is seen, the two empirical
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distribution functions are indistinguishable. Overall, modLISA for BART with the new
tree proposals introduced by MP, performs well in terms of accuracy and timing which
shows consistent results with the ones found in Entezari et al. (2016). This illustrates
the ability of modLISA to effectively sample from posterior distributions even when the
datasets are too large and need to be divided into K batches before proceeding.

Figure 1: Comparing empirical distribution functions of f̂(x) in modLISA weighted
average with K = 30 to SingleMachine BART for two different test observations.
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Comment by Abdolreza Mohammadi1 and
Maurits Kaptein2

Abstract. The author should be commended for his outstanding contribution to
the literature on Bayesian regression tree models. The author introduces three
innovative sampling approaches which allow for efficient traversal of the model
space. In this response, we add a fourth alternative.

Keywords: Markov chain Monte Carlo, birth–death process, continuous time
Markov process, Bayesian regression tree.

1 Background

The algorithm introduced in Section 2.4 consists of a combination of birth/death and
tree rotation proposals. Essentially, the birth/death mechanism explores trees with a
different dimension, while the rotation mechanism explores alternative trees with the
same dimensions. The specific birth/death mechanism proposed is known as reversible
jump Markov chain Monte Carlo (RJ-MCMC) (Green, 1995) and is based on an ergodic
discrete-time Markov chain. This algorithm is efficient only if the acceptance rate is high.
As the author points out, this is not always the case.

This issue can be overcome by adopting birth–death MCMC (BD-MCMC) which
is based on a continuous-time Markov process, as an alternative to RJ-MCMC. In
this sampling scheme the algorithm explores the model space by jumping to a larger
dimension (birth) or lower dimension (death) where each of these events is modeled as
independent Poisson processes. The birth and death events thus occur in continuous
time and their rates determine the stationary distribution of the process; see Figure 1.
In BD-MCMC the moves between models are always accepted making the algorithm
extremely efficient. Cappé et al. (2003) have shown, on appropriate rescaling of time,
that the RJ-MCMC converges to a continuous time birth–death chain. One advantage
of BD-MCMC is its ability to transit to low probability regions that can form a kind of
“springboard” for the algorithm to flexibly move from one mode to another. The BD-
MCMC algorithm has already been used effectively in the context of graphical models
(Mohammadi and Wit, 2015; Mohammadi et al., 2017; Mohammadi and Wit, 2016) and
mixture distributions (Stephens, 2000; Mohammadi et al., 2013).

2 Extension to BD-MCMC sampler

To implement the BD-MCMC mechanism we need to proof that the stationary distri-
bution of the birth–death process converges to our target posterior distribution

Pr(T |data) ∝ π(T )L(T ).

1Dept. of Methodology and Statistics, Tilburg University, The Netherlands, a.mohammadi@uvt.nl
2Dept. of Methodology and Statistics, Tilburg University, The Netherlands, m.c.kaptein@uvt.nl
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Figure 1: Visualization of the BD-MCMC algorithm. The left panel shows the true
posterior distribution and the middle panel compares to progression of BD-MCMC and
RJ-MCMC. {W1,W2, . . .} denote waiting times and {t1, t2, . . .} denote jumping times
for the BD-MCMC algorithm, while the dots visualize the discrete RJ-MCMC samples.
The right panel presents the estimated posterior probabilities of the trees which are the
proportional to the waiting times (see, Cappé et al., 2003, Section 2.5).

Mohammadi and Wit (2015) show that this will be the case if the balance condition
holds (Mohammadi and Wit, 2015, Appendix 1). It is easy to see that the proof of this
condition for graphical models provided by Mohammadi and Wit (2015) is also valid for
regression trees by noting that a tree is a special case of a graph. Let ΘT be the tree-
model space and ΘGmax graph space in which Gmax is a graph with the same number
of nodes as a tree T with the maximum number of nodes. Clearly, ΘT ⊂ ΘGmax . This
argument supports the implementation of the same birth/death mechanism as proposed
by Mohammadi and Wit (2015) for trees: adding/removing a graph edge in the case of
a birth/death event corresponds to adding/deleting a node of the tree (see Figure 2).

Following Mohammadi and Wit (2015), the birth and death rates are

Bn(T ) =
π(T+n)L(T+n)

π(T )L(T )
,

Dn(T ) =
π(T−n)L(T−n)

π(T )L(T )
,

in which T+n/T−n is a tree T with one more/less node n. As birth and death follow a
Poisson processes, the time between two events has an exponential distribution and the
probability of birth and death events are proportional to their rates.

We thus propose to replace the accept–reject mechanism of RJ-MCMC by a con-
tinuous time birth–death mechanism. In this new birth/death scheme the births and
deaths occur at a higher rate when the components explain more of the data; a desir-
able feature not present in the RJ-MCMC approach. We believe that combining the
BD-MCMC with the rotation mechanism will increase the efficiency of the traversal of
model space (for a performance comparison of RJ-MCMC and BD-MCMC in graphical
models see Section 4.1 of Mohammadi and Wit, 2015).
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Figure 2: The birth–death mechanism for adding or deleting nodes of the tree.
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We would like to congratulate the author for this contribution that provides im-
proved proposals for the Metropolis–Hastings algorithm when the state of the chain can
be mathematically represented as a tree. The paper is a very enjoyable read.

The author considers the use of the Metropolis–Hastings algorithm to simulate from
the posterior in Bayesian regression tree (BRT) models. The algorithms typically used
for such models suffer from poor mixing, remaining trapped in a local mode due to a
small rate of acceptance of new candidate trees. The author suggests novel proposal
mechanisms (to be used within a standard Metropolis–Hastings technique) in order
to efficiently traverse the state space and improve the mixing of the chain. Our main
consideration is that it would be worthwhile to combine the proposed method with other
kinds of Monte Carlo (MC) algorithms, in order to improve the mixing of the resulting
sampler.

For example, Multiple Try Metropolis (MTM) schemes (Casarin et al., 2011; Liu
et al., 2000; Martino et al., 2012; Martino and Read, 2013; Martino and Louzada, 2016;
Qin and Liu, 2001) can be easily applied in order to make inference in BRT models. In
these methods, several trees are created and compared before they are proposed as a new
state. Namely, the next tree of the chain is selected within a set of possible trees, drawn
from a single or multiple proposal mechanisms (Casarin et al., 2011; Martino and Read,
2013). The main advantage of MTM is that it can quickly explore large portions of the
sample space and reduce the probability of remaining trapped in a local mode. The use
of different proposal functions can be also a way of combining several ideas suggested
in different works. It is important to remark that, in general, the acceptance rate of an
MTM converges to 1 as the number of candidates grows (Martino and Louzada, 2016;
Martino and Read, 2013).

Another possible way of exploring the space of trees is through the use of Combina-
torial Sequential Monte Carlo (C-SMC) (Wang, 2012). This generalization of sequential
importance sampling allows one to generate tree proposals by iteratively adding nodes
to smaller trees. Since this algorithm simultaneously grows several trees from the empty
tree, it generally explores several of the local modes (see (Stern, 2015) and the related
work (Naesseth et al., 2015) for other applications of SMC schemes for inference in tree
models).

It is possible to combine all the previous approaches as proposals in a particle MH
(PMH) chain (Andrieu et al., 2010). PMH is an MCMC technique that can be inter-
preted as an MTM scheme where the set of candidate trees is built by a particle filter

1Universitat de València, Spain, lukatotal@gmail.com
2Universidade Federal de Sã Carlos, Brazil
3Universidade de São Paulo (ICMC), Brazil

mailto:lukatotal@gmail.com
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(a.k.a., Sequential Monte Carlo) approach (Martino et al., 2014). So the advantages of
SMC and MCMC strategies are mixed in this solution (Martino et al., 2014). Finally, as
a future work, the possible adaptation of the perturbation mentioned in the schemes of
Section 4 could be investigated, designing schemes similar to the approaches proposed
in (Haario et al., 2001, 2005).
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