Topic 2 - Part 1: SYSTEMS IN THE TIME DOMAIN

Linear systems and circuit applications

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u>

Based also on Professor Óscar Barquero Perez, Andrés Martínez and José Luis Rojo's slides

Any transformation, any mapping of a signal into other signal:

$$y(t) = F\{x(t)\}$$

$$y(t) = f(x(t), x(t-1), x(t+2)...)$$

even with feedback (autoregressive systems):

$$y(t) = f(x(t), x(t-1), ..., y(t-1), y(t-2))$$

System definition

A system can be viewed as a process in which input signals are transformed by the system
or cause the system to respond in some way, resulting in other signals as outputs.

Example: dynamical systems

- A simple dynamical system: a little car on a surface, tide to the wall by a spring.
- Law of forces:

$$M\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = F(t)$$

Example: a circuit system

- RLC circuit. The input is $v_i(t)$, an arbitrary signal.
- The output v_o(t) will be a transformation of the input. Is there a equation relating them?

$$LC\frac{d^{2}v_{0}(t)}{dt^{2}} + RC\frac{dv_{0}(t)}{dt} + v_{0}(t) = v_{i}(t)$$

- It is a second order diferential equation. Note the similarity with the mechanical system..
- The signal and systems tools can be used in many applications.

Example: Integrator Systems

• We have an integrator system, which input is the signal x(t) = tu(t). Therefore, for t < 0:

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau = \int_{-\infty}^{t} 0d\tau = 0$$

whereas for $t \geq 0$:

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau = \int_{0}^{t} \tau d\tau = \left[\frac{\tau^{2}}{2}\right]_{0}^{t} = \frac{t^{2}}{2}$$

The output can be expressed using the unit step signal:

$$y(t) = \frac{1}{2}t^2u(t)$$

Some properties of a system

- In the following, we will describe some properties of a generic system:
- Memory
- Causality
- Stability
- Time invariance
- Linearity

Memory

Memory

- A system is said to be memoryless if its output, for each value of t, is dependent only on the input at that same time, that is, y(t) = f(x(t)).
 - A system is "with memory" in any other case.
 - Note that the memory can be the past or the future....

Examples

- Memoryless systems:
 - $y(t) = (2x(t) x^2(t))^2$.
 - A resistor, in which y(t) = Rx(t).
- Systems with memory:
 - A delay system, y(t) = x(t-2).
 - A capacitor $v_C(t) = \frac{1}{C} \int_{-\infty}^t i_C(\tau) d\tau$.

Memory

(*) Determine if each of the following systems are memoryless or with memory:

$$y(t) = t \cdot x(t).$$
 memoryless with memory
$$y(t) = x(t+4).$$
 with memory
$$y(t) = \sum_{k=-3}^{0} x(t-k).$$
 with memory
$$y(t) = x(-t).$$
 with memory
$$y(t) = \cos(3t)x(t).$$
 memoryless
$$y(t) = x(t) + 0.5y(t-2).$$
 with memory

Note that the memory can be the past or the future....

Memory in a image or 2D signal

Bidimensional signal

memoryless

with memory

with memory

with memory

Memory

$$y(t) = \frac{dx(t)}{dt} - \cdots$$
?

Causality

and also outputs values in the past...

Causality

- A system is causal is the output at any time depends only on values of the input at the present time (same time) and in the past. Such a system is often referred to as being physically feasibles or nonanticipative.
- just to give an idea:

$$y(t) = f(x(t), x(t-1), x(t-2), ..., y(t-1), y(t-2), ...)$$

• we are talking of any mapping, any generic transformation, f(...) or $f\{...\}$

remember that "inputs" means also delayed version of the outputs

Non-causal and anti-causal

- Non-Causal: the output depends on the past and future jointly (and can be also dependent on the present).
- Anti-Causal: the output depends on the future (and can be also dependent on the present).
- in different books, there are different definitions...

Causal, Anti-Causal, Non-causal: examples

Causal system:

$$y(t) = f(x(t), x(t-1), x(t-2))$$

Anti-causal system (depends on the future):

$$y(t) = f(x(t+2))$$
 $y(t) = f(x(t), x(t+1))$ $y(t) = f(x(t), y(t+5))$

Non-causal system (depends on the future and the past):

$$y(t) = f(x(t-1), x(t+3))$$
 $y(t) = f(x(t), x(t-5), x(t+3))$

- The system y(t) = x(t) x(t-1) is causal.
- The system y(t) = 2x(t+3) is anticausal.
- The system y(t) = x(t-1) x(t+3) is noncausal.

$$y(t) = x(-t).$$
 Non-causal (...anti-causal...)
$$y(t) = x(t) \cdot \cos(t+1).$$
 Causal
$$y(t) = Ax(t).$$
 Causal
$$y(t) = \int_{-\infty}^{t+2} x(\tau) d\tau.$$
 Non-causal

$$y(t) = x(at)$$

Non-causal

$$\forall a \quad \text{with } a \neq 1$$

https://www.youtube.com/watch?v=0TzBSqENELM&list=PLBInK6fEyqRhG6s3jYIU48CqsT5cyiDTO&index=87 https://www.youtube.com/watch?v=A5SITkKfUz0&list=PLBInK6fEyqRhG6s3jYIU48CqsT5cyiDTO&index=88

Causal systems and memoryless systems

Every memoryless system is causal

Stability

Stability

A system is sadi to be stable when bounded inputs leads to bounded outputs, for any time, t.
 Mathematically, this property is expressed as (BIBO):

$$|x(t)| < K_x < \infty \Rightarrow |y(t)| < K_y < \infty$$

 A system is unstable whenever we are able to find a specific bounded input that leads to an unbounded output. Finding one such example enable sus to conclude that the given system is unstable.

Stability

Stability: examples

1
$$y(t) = [x(t)]^2$$
. Stable
2 Derivative system: $y(t) = \frac{dx(t)}{dt}$. Stable
3 Integrator system: $y(t) = \int_{-\infty}^{t} x(\tau)d\tau$. Unstable
4 $y(t) = t \cdot x(t)$. Stable
5 $y(t) = x(-t)$ Stable
6 $y(t) = x(t-2) + 3x(t+2)$. Stable
6 $y(t) = Impar(x(t))$. Stable
6 $y(t) = e^{x(t)}$. Stable

Stability: examples

$$y(t) = \frac{1}{x(t)+1} \longrightarrow \textbf{Unstable}$$

Time invariance

Time Invariance (I)

- A system is time invariant if the behavior and characteristicas of the system are fixed over time.
- A system is time invariant if a time shift in the input signal results in an identical time shift in the output signal.
- The system is said to be time variant otherwise.

Time invariance

Output of a time invariant

Time invariance

Time invariance: method

- ① Let be $x_1(t)$ an arbitrary input, and let be $y_1(t)$ the output for this particular input.
- 2 The output is shifted by a given t_0 , $y_1(t-t_0)$.
- Then, consider a second input, $x_2(t)$, which is obtained by shifting $x_1(t)$ in time, $x_2(t) = x_1(t t_0)$. The corresponding output is $y_2(t)$.
- We have to compare both outputs $y_2(t) \stackrel{?}{=} y_1(t-t_0)$, if the equality holds, then the system is time invariant.

Time invariance: examples

$$y(t) = \cos \left[x(t)\right]. \longrightarrow \text{ time invariant}$$

$$y(t) = t + x(t). \longrightarrow \text{ time variant}$$

$$y(t) = tx(t). \longrightarrow \text{ time variant}$$

$$y(t) = \int_{-\infty}^{2t} x(\tau) d\tau. \longrightarrow \text{ time invariant}$$

$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau. \longrightarrow \text{ time invariant}$$

$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau. \longrightarrow \text{ time invariant}$$

https://www.youtube.com/watch?v=BZq7j2b-7Lwhttps://www.youtube.com/watch?v=P4_iWrawCZs

Linearity

Linearity

- A systems is said to be linear when it possesse the property of superposition. The property
 of superposition has two properties: additivity and scaling or homogeneity:
 - Additivity: the response to $x_1(t) + x_2(t)$ is $y_1(t) + y_2(t)$.
 - Scaling: the response to $ax_1(t)$ is $ay_1(t)$ (whit $a \in \mathbb{C}$).
- The two properties can be combined. A system is linear when the response to $ax_1(t) + bx_2(t)$ is $ay_1(t) + by_2(t)$.

Linearity

 Note, as a consequence, we can show that fo linear system an input which is zero for all time results in an output which is zero for all time.

Linearity: examples

$$y(t) = t \cdot x(t).$$

$$y(t) = x^{2}(t).$$

$$y(t) = x^{2}(t).$$

$$y(t) = 2x(t) + 3$$

$$y(t) = 2x(t) + 3$$

$$y(t) = x^{2}(t).$$

Important properties

Comments on system properties Study these properties at home

- Every memoryless system is causal
- The outuput of a linear system for a zero input is a zero output.
- If a system is time invariant, periodic inputs lead to periodic outputs.

Homeworks

Study the properties of both systems:

$$y(t) = \begin{cases} 0 : & t < 0 \\ x(t) + x(t-2) : & t \ge 0 \end{cases}$$

$$y(t) = \begin{cases} 0 : & x(t) < 0 \\ x(t) + x(t-2) : & x(t) \ge 0 \end{cases}$$

Summary: what we saw so far

- what is a system
- properties of a system

Summary: what will see...

- We will focus on: LINEAR TIME INVARIANT (LTI) SYSTEMS
- LTI systems in time
- LTI systems in transformed domain (frequency domain etc.)

Questions?