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Abstract The Multiple Try Metropolis (MTM) algorithm is an advanced MCMC
technique based on drawing and testing several candidates at each iteration of the
algorithm. One of them is selected according to certain weights and then it is tested
according to a suitable acceptance probability. Clearly, since the computational cost
increases as the employed number of tries grows, one expects that the performance of
an MTM scheme improves as the number of tries increases, as well. However, there
are scenarios where the increase of number of tries does not produce a corresponding
enhancement of the performance. In this work, we describe these scenarios and then
we introduce possible solutions for solving these issues.

Keywords Multiple Try Metropolis algorithm · Multi-point Metropolis algorithm ·
MCMC methods · MTM with variable number of tries

1 Introduction

Markov chain Monte Carlo (MCMC) methods are classical Monte Carlo techniques
(Robert and Casella 2004), that produce a Markov chain converging to a target proba-
bility density function (pdf), usually to approximate an otherwise-incalculable integral
(Liu 2004; Liang et al. 2010).

The Multiple-Try Metropolis (MTM) method (Liu et al. 2000) is an extension of
the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970) in which
the next state of the chain is selected among a set of N independent and identically
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distributed (i.i.d.) samples. This enables the MTM sampler to make large step-size
jumps without a lowering in the acceptance rate; and thus MTM can explore easily a
larger portion of the sample space in fewer iterations. Different MTM schemes have
been proposed in literature (Frenkel and Smit 1996, Chapter 13), (Qin and Liu 2001;
Casarin et al. 2013; Pandolfi et al. 2010;Martino et al. 2012; Craiu and Lemieux 2007)
and have been studied in several works (Bédard et al. 2012; Martino and Read 2013;
Martino et al. 2014). More recently parallel MTM algorithms have been proposed in
Martino et al. (2015a).

A well-designed MTM scheme improves its performance as the number of tries,
N , grows. Namely, when N grows approaching infinity, the correlation among the
generated samples should vanish to zero. Clearly, this is at the expense of an increasing
computational cost due to the use of a greater number of tries. In this work, we describe
certain scenarios where the use of a greater N in a standard MTM method (Liu et al.
2000) and its extensions (Casarin et al. 2013; Pandolfi et al. 2010; Martino et al.
2012; Martino and Read 2013) does not yield an improvement in the performance.
We explain the reasons of these drawbacks, and provide possible solutions for fixing
these issues. The first scenario involves the use of a single random-walk proposal
within a standard MTM structure, whereas, in the second scenario, the use of multiple
proposal pdfs independent from the previous state of the chains is considered. In the
first one, the increase of number of tries is always prejudicial, regardless of the choice
of the weight functions [involving the target function in a suitable way (Liu et al. 2000;
Martino and Read 2013)]. In the second one, the increase of number of tries can help
the mixing of the chain using a certain class of the weight functions (clearly, at the
expense of a greater computational cost). However, we discuss different ways of using
the set of multiple independent proposal pdfs within an MTM scheme improving
the performance, in any case. For improving the performance in the first scenario,
we suggest to use an MTM with variable number of tries, in a suitable way without
jeopardizing the ergodicity of the chain.

2 Multiple Try Metropolis with a single random-walk proposal

Let us denote the target density as π̄(x) ∝ π(x). First of all, we consider the use of a
single random-walk proposal density, q(z|xt−1) = q(z − xt−1). Given a current state
of the chain xt−1 ∈ X ⊆ R

dX , t ∈ N, an MTM scheme generates N independent
candidates {z1, . . . , zN } from a proposal density q, i.e.,

z1, . . . , zN ∼ q(z|xt−1).

Then, one sample z is selected among the set {z1, . . . , zN }, according to certain weight
functions (Liu et al. 2000; Martino and Read 2013). The movement from xt to z is
accepted with a suitable probability α(xt−1, z), which also depends on the rest of
candidates. The probability α(xt−1, z) is designed such that the kernel of the MTM
algorithm fulfills the detailed balance condition. Only for facilitating the comprehen-
sion, we consider the importance weights
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Table 1 Multiple Try
Metropolis with a (single)
random-walk proposal
(RW-MTM)

1. Draw N independent samples from the proposal pdf,

z1, . . . , zN ∼ q(x|xt−1) = q(z − xt−1)

2. Select a sample z ∈ {z1, . . . , zN }, according to the
probabilities

w̄k = w(zk |xt−1)∑N
n=1 w(zn |xt−1)

, where w(zk |xt−1)= π(zk )
q(zk |xt−1)

, (1)

for k = 1, . . . , N

3. Draw N − 1 auxiliary points from the proposal q given
the previous selected sample z, namely
y1, . . . , yN−1 ∼ q(x|z), and set yN = xt−1

4. Compute the weights of the auxiliary points,

w(yk |z) = π(yk )
q(yk |z) , for k = 1, . . . , N . (2)

5. Set xt = z with probability

α(xt−1, z) = min

[

1,
∑N

n=1 w(zn |xt−1)
∑N

n=1 w(yn |z)

]

(3)

Otherwise, set xt = xt−1, with probability
1 − α(xt−1, z)

w(zk |xt−1) = π(zk)
q(zk |xt−1)

, (4)

for choosing z ∈ {z1, . . . , zN }, i.e., z is selected according the probabilities w̄k =
w(zk |xt−1)∑N
n=1 w(zn |xt−1)

. Different kind of weights could be used (Martino and Read 2013;

Pandolfi et al. 2010), but without avoiding the problem that we describe in the next
section.

Table 1 shows all the details of the MTM technique. Observe that, an RW-MTM
method requires the generation of N − 1 auxiliary points y1, . . . , yN−1 from q(·|z)
(see Step 3 of Table 1). Moreover, note that the selected sample z is drawn from the
empirical measure

π̂ (N )(z) =
N∑

n=1

w̄nδ(z − zn), (5)

that approximates the distribution of π , via importance sampling (IS) (Robert and
Casella 2004; Liu 2004). Finally, we remark that the acceptance probability α(xt−1, z)
in Eq. (3) can be expressed as

α(xt−1, z) = min

[

1,
Ẑ(z1, . . . , zN |xt−1)

Ẑ(y1, . . . , yN |z)

]

, (6)

where the function Ẑ(·|r) : X N → R, with r ∈ X ,

Ẑ(v1, . . . , vN |r) = 1

N

N∑

n=1

π(vn)
q(vn|r) , (7)
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is an estimator of the normalizing constant Z = ∫
X π(x)dx (Robert andCasella 2004),

i.e., of the area below π(x).

3 Problem in the RW-MTM mixing

The desired behavior of an MTM scheme is that the performance improves as the
number of used candidates N grows (jointly with the computational cost). Indeed in
general, as N increases, the chosen point z is selected from a better IS approximation
π̂ (N ) of π̄ , so that z is a better candidate to be tested as new possible state of the
chain. As a consequence, in a well-designed MTM scheme the acceptance probability
α(xt−1, z) should approach 1 when N → ∞. Thus, in general, MTM fosters greater
“jumps” and, as a consequence, a faster exploration of the state space. However,
below we describe a scenario where the increase of number N of tries could be even
damaging.

For facilitating the explanation, we assume that the expected value of the random
variable Z ∼ q(z− xt−1) is exactly xt−1, i.e., E[Z] = xt−1, e.g., when q is Gaussian,
q(z − xt−1) = N (z; xt−1,C). Let us denote Ẑ1 = Ẑ(z1, . . . , zN |xt−1) and Ẑ2 =
Ẑ(y1, . . . , yN |z), so that we can rewrite the acceptance probability as

α = min

[

1,
Ẑ1

Ẑ2

]

. (8)

Furthermore, consider a scenario where the state in the (t − 1)-th iteration, xt−1,
is placed in a region of low probability of π̄(x) ∝ π(x), nearby a region of high
probability mass (e.g., see Fig. 1a). Assume also that the variance of the proposal

–5
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xt−1

Fig. 1 Graphical representation of a possible scenario described in Sect. 3, where Ẑ2 > Ẑ1 (and Ẑ2 >> Ẑ1
when N grows). We show the contour plot of a bidimensional target pdf π(x) with solid lines. The previous
state of the chain xt−1 is depicted with a square; the N = 4 candidates z j ’s are shown with circles, whereas
the N−1 = 3 auxiliary points yi ’s are illustrated with triangles.Dashed lines represent the scale parameters
of the proposal densities q(·|xt−1) and q(·|z), where z ∈ {z1, . . . , z4} is the selected candidate
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q(z − xt−1) is wide enough in order to (at least) reach the region of high probability
mass of π . In this situation, several drawn tries are located in the region of small
probability around the value E[Z] = xt−1. On the other hand, it is possible that few
of them are located close to the mode of π ; Fig. 1a depicts a possible scenario of this
kind, with only N = 4 tries and one of them located in a mode of π . Thus, it is highly
probable that theMTM selected one well-located point as proposed sample z, after the
resampling at Step 2. For the same reasons, in general, many of the N − 1 auxiliary
points, y1, . . . , yN−1 drawn from q(y|z), will be placed around the mode of π . Hence,
in this situation, we have that

Ẑ2 = 1

N

N∑

n=1

π(yn)
q(yn|z) >> Ẑ1 = 1

N

N∑

n=1

π(zn)
q(zn|xt−1)

.

As a consequence,

α(xt−1, z) ≈ 0,

so that the chain can remain stuck at xt−1. It is important to observe that this situation
can become even worse if N grows. On the contrary, in this scenario, the use of a
smaller number of tries can help to jump to the region of high probability. Finally,
we remark that the problem previously described cannot be solved by changing of
analytical form of the weights ( Liu et al. 2000; Martino and Read 2013).1

3.1 Proposed solution

Let us denote as Km(xt |xt−1, Nm) the kernel of an MTM scheme employing Nm tries.
We consider a combinationM different kernels each of which using a different number
of tries Nm , m = 1, . . . , M , i.e.,

K (xt |xt−1) = 1

M

M∑

m=1

Km(xt |xt−1, Nm). (9)

It is straightforward to show that if each Km(xt |xt−1, Nm) leaves invariant π , also
K (xt |xt−1) has π as invariant pdf (Robert and Casella 2004; Liu 2004). Therefore,
fixing the averaged computational effort, represented by the averaged number or tries

Ñ = 1

M

M∑

m=1

Nm,

we choose M different values Nm ∈ N, such that Ñ is the desired one. The idea is to
use a variable number of tries, i.e., a different number of candidates at each iteration.

1 A suitable acceptance function α for generic weight functions is shown in “Appendix”, for the case of
multiple independent proposal densities.
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Namely, at each iteration, an index m′ is drawn uniformly within 1, . . . , M and then
Nm′ tries are employed in the MTM scheme Km′ . Note that this is equivalent to use
the kernel in Eq. (9). Choosing at least one small value, e.g., N1 = 1, this helps
jumps of the chain in the awkward scenario, previously described. See the numerical
simulations for further details.

4 Multiple Try Metropolis with different independent proposals

TheMTMalgorithm inTable 1 can be simplified if the proposal pdfq(x) is independent
from the previous state of the generated chain. Indeed, in this case, Step 3 in Table 1 can
be removed, in the sense that it is possible to avoid the generation of the auxiliary points
(Liu et al. 2000; Martino and Read 2013). Furthermore, it is also possible to employ
simultaneously different proposal pdfs q1(x), . . . , qN (x) (Casarin et al. 2013;Martino
and Read 2013). The resulting algorithm is detailed in Table 2, considering the use of
importance weights. The acceptance probability α in Eq. (12) can be written again as

α = min

[

1,
Ẑ1

Ẑ2

]

,

where, in this case,

Ẑ1 = 1

N

N∑

n=1

wn(zn),

Ẑ2 = 1

N

(
N Ẑ1 − w j (z j ) + w j (xt−1)

)
. (10)

The general acceptance function α for I-MTM using generic (bounded and positive)
weights is shown in Eq. (14).

5 Problem in the I-MTM mixing

First of all, we can observe that the sums in Ẑ1 and Ẑ2 in Eq. (10) differ only for one
weight, i.e., Ẑ1 contains w j (z j ) but does not involve w j (xt−1), whereas Ẑ2 includes
w j (xt−1), instead of w j (z j ). Thus, using importance weights, the probability α of
an I-MTM scheme always approaches 1 when N increases, if the employed weight
functions are included in the class of weights proposed in Liu et al. (2000).2 This
statement is instead not valid, in general, for the generic weight functions given in
Pandolfi et al. (2010), Martino and Read (2013) and recalled in Eq. (14).

In this section we focus on the use of importance weights, which are contained in
class discussed in Liu et al. (2000). The solutions that we discuss later on are valid

2 Considering the case of independent proposal pdfs, the class of weights in Liu et al. (2000) is defined
as wk (yk |z) = π(zk )qk (x)λk (zk , x) with k = 1, . . . , N , and λk (zk , x) = λk (x, zk ) is a generic symmetric

function w.r.t. zk and x. As an example, if we set λk (zk , x) = 1
qk (x)qk (zk )

, we obtain the importance weights

wk (zk |x) = wk (zk ) = π(zk )
qk (zk )

.
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Table 2 Multiple Try
Metropolis with different
independent proposals (I-MTM)

1. Draw N independent samples

z1 ∼ q1(x), . . . , zN ∼ qN (x)

2. Select a sample z j ∈ {z1, . . . , zN }, according to the probabilities

w̄k = wk (zk )∑N
n=1 wn (zn )

, where wk (zk ) = π(zk )
qk (zk )

, (11)

for k = 1, . . . , N

3. Set xt = z j with probability

α(xt−1, z j ) = min

[

1,
∑N

n=1 wn (zn )
∑N

n=1 wn (zn )−w j (z j )+w j (xt−1)

]

(12)

Otherwise, set xt = xt−1, with probability 1 − α(xt−1, z j )

in any cases, including the use of the generic weights in “Appendix”. Note that, in
I-MTM, the j-th weight involves the j-th proposal pdf, i.e.,

w j (x) = π(x)
q j (x)

.

We need to evaluate the j-th weightw j , involving the j-th proposal q j , at z j and xt−1.
The sample z j is drawn from q j by definition, whereas xt−1 is the previous state of
the chain (it could be generated from any possible qn in the previous iterations of the
I-MTM algorithm). Hence, with high probability z j is located nearby a mode of q j ,
since z j ∼ q j (z), whereas xt−1 could be placed close to a mode or a tail of q j with
equal chance, in general. Thus, since the proposal q j appears in the denominator of
the weights w j , in general we have w j (z j ) < w j (xt−1), producing small values of
acceptance probability α, if N is not enough big. This scenario becomes even more
complicated, if the proposal pdf q j is placed close to a mode of the target π , and the
previous state xt−1 is located in a tail of q j . In this case, if π(xt−1) 
= 0, the value of
w j (xt−1) can be huge and w j (xt−1) >> w j (z j ). Hence, the I-MTM scheme tends
to select several times the sample drawn from q j , i.e., z j , as “good” candidate (step
2 of Table 2), but the movement from xt−1 to z j is often rejected since α ≈ 0. As
a consequence, the chain can remain indefinitely trapped in this situation. Figure 2
represents graphical sketch of this situation.

5.1 Proposed solutions

Below, we discuss different possible solutions, ordered for increasing theoretical com-
plexity and practical interest. It is important to remark that the change of the analytic
form of the weights is not a solution as shown in “Appendix”.

5.1.1 First solution

First of all, let us consider the possibility of using a greater number of tries keeping
fixed the number N of proposal pdfs, i.e., denoting with P the number of tries we
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Fig. 2 Graphical representation
of the scenario described in Sect.
5. The contour plot of a bimodal
(unnormalized) target pdf π(x)
is depicted with solid line
whereas the j-th (unnormalized)
proposal pdf q j (x) is shown
with dashed line
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have P > N with P = kN with k ∈ N. The problem described above could be solved
increasing P , when the used weights are importance weights.3 If xt−1 is located in
a tail of q j , the value of P required to solve the issue, could be huge. However, this
trivial solution entails an increase of the computational cost in terms of evaluations
of the target function. In the sequel, we introduce alternative solutions which do not
require to increase the computational cost and are valid for any possible kind of weight
functions, used within I-MTM.

5.1.2 Second solution

The problem described above disappears if we consider a unique proposal pdf defined
as mixture, i.e.,

ψ(x) = 1

N

N∑

n=1

qn(x).

Hence, in this case, we draw z1, . . . , zN from ψ(x) and the weights are

w(zn) = π(zn)
ψ(zn)

.

We can observe that in the denominator of the importance weight all the components
qn’s are used and hence evaluated, in this case. Let us assume that the previous state
of the chain xt−1 was generated from the k-th component of the mixture, i.e., qk(x),
in a previous iteration, and the selected candidate z j has been drawn from q j (x),
by definition. In this scenario, both pdfs, qk and q j , are involved simultaneously in
the denominator of importance weights, avoiding the problem previously described.
Although the mixture ψ(x) takes into account all the proposal pdfs qn’s, unlike in the

3 When other kind of weights is employed, the problem could persist even increasing P .
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I-MTM in Table 2, in this case only a subset of the components {q1(x), . . . , qN (x)}
participates in generating candidates at each iteration. To avoid this drawback, see
below the next solution.

5.1.3 Third solution

The joint use of the functions q1(x), . . . , qN (x) (with equal proportion, at each iter-
ation) in general increases the robustness of the resulting algorithm. Namely, if no
information is available to choose the best proposal in the set {q1(x), . . . , qN (x)},
a more robust strategy consists in employing always the complete set of functions.
The deterministic mixture (DM) approach (Veach and Guibas 1995; Owen and Zhou
2000; Elvira et al. 2015a, b), successfully applied in different sophisticated Monte
Carlo algorithms (Cornuet et al. 2012; Martino et al. 2015b, c), provides a possible
solution. Indeed, using the DM approach, we can draw one sample zn from each
proposal pdf qn(x), i.e.,

z1 ∼ q1(x), . . . , zN ∼ qN (x),

exactly as in step 1 of Table 2, and then assign the corresponding DM weights

w(zn) = π(zn)
ψ(zn)

= π(zn)
1
N

∑N
n=1 qn(x)

, n = 1, . . . , N .

It is possible to show that this approach is valid and it can be interpreted as vari-
ance reduction technique for sampling from a mixture of pdfs. Namely, we use a
quasi-Monte Carlo approach for generating the indices jn , n = 1, . . . , N , i.e., the
deterministic sequence j1 = 1, j2 = 2, . . . , jn = N , and then zn ∼ p(x| jn) = qn(x)
for n = 1, . . . , N . The DM approach improves the performance of the IS numerical
approximation (Owen and Zhou 2000; Elvira et al. 2015a). Observe that, also in this
case, we solve the issue, since again all the proposals are included in the denominator
of the weights, and we always use all the proposals q1, . . . , qN at each iteration (as in
Table 2).

6 Numerical simulations: localization in a wireless sensor network

We consider the problem of positioning a target X in a two-dimensional space using
range measurements (Ali et al. 2007; Fitzgerald 2001). More formally, we consider a
random vectorX = [X1, X2]� denoting the target’s position inR2. Themeasurements
are obtained from 6 sensors located at h1 = [−5, 1]�, h2 = [−2, 6]�, h3 = [0, 0]�,
h4 = [5,−6]�, h5 = [6, 4]� and h6 = [−4,−4]�, and the observation equations are
given by

R j = −10 log

( ||X − h j ||
0.3

)

+ Ω j , j = 1, . . . , 6, (13)
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(a) (b) (c)

(f)(e)(d)

Fig. 3 a–c Realizations of the standard RW-MTM method with a N = Ñ = 200 (τ∗ = 750, in this
specific run), b N = Ñ = 500 (τ∗ = 1214) and c N = Ñ = 1000 (τ∗ = 1558). d—f Realizations of the
novel method with d Ñ = 200 (τ∗ = 43, in this run), e Ñ = 500 (τ∗ = 52) and f Ñ = 1000 (τ∗ = 15)

where Ω j are i.i.d. Gaussian random variables, Ω j ∼ N (ω j ; 0, 5). Let us assume to
receive the observation vector r = [26, 26.5, 25, 28, 28, 25.3]�. In order to perform
Bayesian inference, we consider a non-informative prior over X (i.e., an improper
uniform density on R2), and study the posterior pdf, π̄(x) = p(x|r) ∝ p(r|x)p(x). A
contour plot of π̄(x) ∝ π(x) is shown in Fig. 1.

We perform different MTM schemes for drawing samples from the posterior π̄(x).
In order to highlight the described issues, we decide the starting point of the chain at
x0 = [−6,−6]� forcing the chain to escape from a region of low probability of π̄(x).
We run 500 independent simulations of different MTM schemes with t = 1, . . . , T
(we set T = 2000 forRW-MTMand T = 4000 for I-MTM), and compute the expected
time needed for the chain to escape from the region around x0 and reach the region
containing the modes of the target. For this purpose, at each iteration of the algorithm,
we calculate the Euclidean distances d1,t = ||xt − x0|| and d2,t = ||xt − μ|| where
μ = Eπ [X] = [−0.753,−0.037]� is the expected value of X ∼ π̄(x).4 At each run,
we obtain the first iteration τ ∗ such that d1,τ∗ > d2,τ∗ , hence τ ∗ can be interpreted
as the time that the chain remained trapped around x0, in the specific run (see Fig. 3
as examples of τ ∗). Cleary, we have 1 ≤ τ ∗ ≤ T . We repeat the procedure for 500
independent runs, in order to approximate the expected time E[τ ∗].

6.1 RW-MTM

For the random walk MTM method, we consider a Gaussian proposal q(x|xt−1) =
N (x; xt−1,�) where � = σ 2

I2 with σ ∈ {0.5, 0.8, 1}. We test different averaged

4 We have computed the vector Eπ [X] numerically, using a computational expensive thin grid in R
2.
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Table 3 Expected number of iterations E[τ∗] required to escape from the region around x0 = [−6,−6]�
with RW-MTM

Scheme σ Ñ = 50 Ñ = 100 Ñ = 200 Ñ = 500 Ñ = 1000

Standard 0.5 101.922 165.320 276.454 431.606 601.050

Novel 67.237 72.349 81.253 92.798 88.444

Standard 0.8 205.299 367.358 612.442 1098.5 1363.1

Novel 49.711 51.557 49.405 49.706 56.145

Standard 1 237.326 443.080 709.808 784.644 699.614

Novel 43.436 41.236 33.906 37.812 39.270

Table 4 MSE in the estimation of Eπ [X], obtained by RW-MTM, with σ = 1 and x0 ∼ U([−6, 6] ×
[−6, 6]), i.e., randomly chosen at each run

Scheme Ñ = 50 Ñ = 100 Ñ = 200 Ñ = 500 Ñ = 1000

Standard 0.1702 0.1193 0.0892 0.0542 0.0266

novel 0.0533 0.0428 0.0329 0.0320 0.0228

The standard and the novel scheme are test with different (fixed or averaged) number of tries Ñ

number of tries Ñ ∈ {50, 100, 200, 500, 1000}. Thus, in the standard RW-MTM
scheme, we set N = Ñ , whereas in the proposed mixture of MTM kernels in Eq.
(9), we consider M = 3 and N1 = 1, N2 = Ñ , N3 = 2Ñ − 1, so that we have
always

Ñ = N1 + N2 + N3

3
.

Therefore, the averaged computational cost is the same in both schemes, in terms of
evaluations of the target distribution. The results, in terms of the expected number of
iterations E[τ ∗], are provided in Table 3. First of all, observe that, in general, E[τ ∗]
grows if the number of tries N increases especially for the standard RW-MTMmethod
(recall that for the standard RW- MTM scheme N = Ñ ). The expected number of
iterations E[τ ∗] of the novelMTM techniquewith variable number of tries (introduced
in Sect. 3.1) is always smaller than the corresponding value of the standard RW-MTM
method. Namely, the novel scheme always outperforms the standard one, escaping
from the region around x0 and reaching the modes of π̄(x) more quickly, whereas the
standard RW-MTMmethod remains stuck around x0 for several iterations, prejudicing
its performance. Figure 3 shows the improvement in the mixing with the proposed
solution with respect to the standard RW-MTM technique.

Furthermore, the Mean Square Error (MSE) in the estimation of Eπ [X] obtained
by RW-MTM (and averaged over 500 runs) is provided in Table 4. In this case, we
set σ = 1 and the initial state is chosen randomly x0 ∼ U([−6, 6] × [−6, 6]) (i.e.,
uniformly in the square ([−6, 6]×[−6, 6]), at each run. We can observe that the novel
scheme provides always the smallest MSE confirming the robustness of the proposed
solution.
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Table 5 Expected number of iterations E[τ∗] required to escape from the region around x0 = [−6,−6]�
with I-MTM

Scheme Conf σ = 1.25 σ = 1.3 σ = 1.35 σ = 1.4

Standard 1 2967.6 1185.6 128.102 15.610

Novel 7.338 10.198 13.652 10.834

Standard 2 3015.6 1212.9 139.816 20.548

Novel 10.130 20.454 6.989 15.920

Table 6 MSE in the estimation
of Eπ [X], obtained by I-MTM,
with Conf2 and
x0 ∼ U([−6, 6] × [−6, 6]), i.e.,
randomly chosen at each run

Scheme σ = 1.25 σ = 1.3 σ = 1.35 σ = 1.4

Standard 6.7943 6.4345 5.9183 5.5595

Novel 0.7677 0.6987 0.3135 0.3055

6.2 I-MTM

For the I-MTM scheme, we consider N = 2 proposal pdfs and also P = N = 2
number of tries (exactly as in the algorithm described in Table 2). Furthermore, the
proposal pdfs are both Gaussians, specifically, qn(x) = N (x;μn,�), for n = 1, 2
and μ1 = [−6,−6]�, μ2 = [0, 0]� in the first configuration (denoted as Conf1),
and μ1 = [−6,−6]�, μ2 = [−1,−2]� in a second one (denoted as Conf2). Thus,
the second proposal pdf is always well-located, unlike the first one. The covariance
matrix is the same for both proposals, � = σ 2

I2, and we test several values of σ,,
i.e., σ ∈ {1.25, 1.3, 1.35, 1.4}. As alternative scheme we consider the use of the
deterministic mixture approach proposed in Sect. 5.1. We compute again the expected
number of iterations E[τ ∗] for reaching the modes starting from x0 = [−6,−6]� and
set T = 4000 as length of the chain, in this case. The results are provided in Table
5. We can observe that with the deterministic mixture approach the chain is able to
jump easily to the regions of high probability of π , unlike with the standard I-MTM
scheme. This occurs for every value of σ . With the standard I-MTM scheme the chain
remains trapped around x0 for several iterations jeopardizing the performance of the
algorithm (see also Table 6).

The MSE values given in Table 6 (and averaged over 500 runs) show that the
improvement obtained by the novel scheme is even more evident than in the RW-
MTM case. We have considered Conf2 and the initial state is chosen randomly x0 ∼
U([−6, 6] × [−6, 6]) at each run.

7 Conclusions

In this work, we have described different scenarios where MTM schemes have not the
desired behavior, preventing the fast exploration of the state space. These drawbacks
cannot be solved simply increasing the computational effort, in terms of used number
of tries.Wehave restricted the description of the problematic cases considering only the
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importance weights for the sake of simplicity, but the issues persist with other generic
weight functions. Furthermore, we provide and discuss different solutions that solved
the previously described problems, as also shown with numerical simulations. The
proposed MTM schemes are in general more robust than the corresponding standard
MTM techniques.
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Appendix: Alternative weights in I-MTM

Other possible weight functions can be employed withinMTM schemes without jeop-
ardizing the ergodicity of the Markov chain. Let us consider the I-MTM scheme in
Table 2 using a generic weight function wn(x), bounded and positive, i.e., wn(x) > 0,
for all n. In this case, we have also to assume π(x) > 0, for all x ∈ X . As shown in
Martino and Read (2013), Pandolfi et al. (2010), the adequate probability for accepting
the jump from xt−1 to z j in this case is

α(xt−1, z j ) = min

[

1,
π(z j )q j (xt−1)

π(xt−1)q j (z j )
WX

WZ

]

, (14)

where

WZ = w j (z j )
∑N

n=1 wn(zn)
, WX = w j (xt−1)

[∑N
n=1 wn(zn)

]
− w j (z j ) + w j (xt−1)

.

If the chosen weights are the importance weights, wn(x) = π(x)
qn(x)

, then Eq. (14)
coincides with Eq. (12). Moreover, note that, in any case, 0 ≤ WZ ≤ 1 and 0 ≤ WX ≤
1. As explained in Sect. 5, in general, it often occurs that q j (z j ) > q j (xt−1) since
z j ∼ q j (z) whereas xt−1 has been generated from a generic qk with k ∈ {1, . . . , N }.
Thus,

π(z j )q j (xt−1)

π(xt−1)q j (z j )
tends to be close to zero and as consequence often α ≈ 0, regardless

of the choice of the weight functions. Observe that if we employ the set of proposal
pdfs q j (x)’s as amixtureψ(x) = 1

N

∑N
n=1 qn(x) as suggested in Sect. 5.1, the problem

is solved also in this case.
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