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Bayesian inference often requires efficient numerical approximation algorithms, such as sequential Monte 
Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods. The Gibbs sampler is a well-known MCMC 
technique, widely applied in many signal processing problems. Drawing samples from univariate full-
conditional distributions efficiently is essential for the practical application of the Gibbs sampler. In this 
work, we present a simple, self-tuned and extremely efficient MCMC algorithm which produces virtually 
independent samples from these univariate target densities. The proposal density used is self-tuned and 
tailored to the specific target, but it is not adaptive. Instead, the proposal is adjusted during an initial 
optimization stage, following a simple and extremely effective procedure. Hence, we have named the 
newly proposed approach as FUSS (Fast Universal Self-tuned Sampler), as it can be used to sample 
from any bounded univariate distribution and also from any bounded multi-variate distribution, either 
directly or by embedding it within a Gibbs sampler. Numerical experiments, on several synthetic data 
sets (including a challenging parameter estimation problem in a chaotic system) and a high-dimensional 
financial signal processing problem, show its good performance in terms of speed and estimation 
accuracy.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Bayesian methods, and their implementations by means of so-
phisticated Monte Carlo techniques [1,2], have become very pop-
ular over the last two decades. Indeed, many practical statistical 
signal processing problems demand procedures for drawing from 
probability distributions with non-standard forms, such as Markov 
chain Monte Carlo (MCMC) methods [3,4] and particle filters [5–7]. 
MCMC techniques generate samples from a target probability den-
sity function (pdf) by drawing from a simpler proposal pdf [1,8]
and generating a Markov chain. The two most widely applied 
MCMC approaches are the Metropolis–Hastings (MH) algorithm 
and the Gibbs sampler [1,2].

The Gibbs sampling technique is extensively used in Bayesian 
inference [9] to generate samples from multivariate target densi-
ties, drawing each component of the samples from univariate full-
conditional densities [10–12].1 When the multivariate target can 
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1 Blockwise Gibbs sampling approaches, where several random variables are up-
dated simultaneously, have been proposed to speed up the convergence of the 
Gibbs sampler [13]. However, unless direct sampling from the multi-variate full-
http://dx.doi.org/10.1016/j.dsp.2015.04.005
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be easily factorized into univariate conditional pdfs, the key point 
for the successful application of the Gibbs sampler is the ability 
to draw efficiently from these univariate pdfs [1,2,10]. The best 
scenario for Gibbs sampling occurs when exact samplers for each 
full-conditional are available. Otherwise, another exact sampling 
technique, like rejection sampling (RS) or an MH-type algorithm, 
is typically used within the Gibbs sampler to draw from the com-
plicated full-conditionals. In the first case, samples generated from 
the RS algorithm are independent, but the acceptance rate can be 
very low. In the second case, we have an approach where an in-
ternal MCMC (the MH method) is applied inside another external 
MCMC (the Gibbs sampler). Therefore, the typical problems of the 
external-MCMC (long “burn-in” period, large correlation, etc.) could 
raise dramatically if the internal-MCMC is not extremely efficient. 
Indeed, although the Gibbs sampler needs only one sample from 

conditionals is feasible, these approaches result in an increased difficulty of drawing 
samples and a higher computational cost per iteration. Furthermore, the perfor-
mance of the overall algorithm can decrease if the blocks are not properly chosen, 
especially when direct sampling from the multi-variate full-conditionals is unfeasi-
ble.

http://dx.doi.org/10.1016/j.dsp.2015.04.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:lukatotal@gmail.com
http://dx.doi.org/10.1016/j.dsp.2015.04.005
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each full-conditional, several iterations are typically performed to 
avoid the “burn-in” period of the internal-MCMC.2

In order to avoid these problems, several automatic and 
self-tuning samplers have been proposed: adaptive rejection sam-
pling (ARS) [14,15], Adaptive Rejection Metropolis Sampling (ARMS) 
[16–18], Independent Doubly Adaptive Rejection Metropolis Sampling
(IA2RMS) [19,20], Adaptive Sticky Metropolis (ASM) [21], etc. ARS 
builds a piecewise linear proposal on the target’s log-domain, 
starting with a reduced number of support points and incorpo-
rating new points whenever a candidate sample is rejected. Unfor-
tunately, since it is based on the rejection sampling technique, the 
proposal must be always above the target, a requirement which 
is only fulfilled by log-concave targets. In order to solve this is-
sue, ARMS introduces a Metropolis–Hastings step, thus obtaining 
a universal sampler which is able to draw virtually from any tar-
get pdf. However, the adaptive structure in ARMS has an important 
restriction: support points cannot be added inside regions where 
the proposal is below the target. Recently, the IA2RMS and ASM 
algorithms have been proposed to overcome this drawback, intro-
ducing more flexibility in the mechanism used to add points to the 
support set and decoupling it from the proposal construction.

All the previous methods build an adaptive sequence of pro-
posal pdfs via some interpolation procedure given a set of support 
points. The proposal is updated when a new support point is incor-
porated, according to some statistical criterion. However, although 
these methods can attain a very good performance, the results 
show a dependence on the initial set of support points. Another 
drawback is the difficulty of ensuring their ergodicity, especially in 
applications within Gibbs sampling [2,17], as the Markovian na-
ture of the chain is lost due to the adaptive nature of the proposal, 
which may depend on all the previous samples. Other related 
works, where a non-adaptive proposal pdf is built via interpolation 
procedures can be found in literature [22–24]. Furthermore, differ-
ent types of generic adaptive MH schemes based on independent 
proposals have also been studied [25,26]. However, in general, the 
considered proposal pdf has a fixed parametric form so that the 
complete adaptation of the proposal is not possible.

In this work, we present a novel algorithm that follows a com-
plementary strategy: start with a large number of support points 
and remove many of them following some pruning strategy.3 The 
key idea is starting with a thin uniform grid that covers the ef-
fective support of the target and discard those support points that 
do not provide relevant information according to some pre-defined 
criterion. The idea of using a grid and a piecewise linear constant 
function to approximate a uni-variate full conditional was already 
proposed by the griddy Gibbs sampler [27]. However, their ap-
proach is substantially different from ours. On the one hand, they 
simply select a few support points heuristically, instead of starting 
with a large set of points and selecting the best ones in a prin-
cipled way. On the other hand, the proposal in the griddy Gibbs 
sampler does not take into account the tails of the target (the pro-
posal is set to zero outside of the interval covered by the grid), 
thus providing a poor performance for slowly decaying tails (e.g., 
heavy tailed distributions). Furthermore, this griddy approximation 
of the uni-variate full conditionals is not embedded within another 

2 Note that, from a theoretical point of view, performing a single iteration of the 
internal MH is enough to guarantee the ergodicity of the Gibbs sampler. However, 
the convergence of the chain can be very slow. Namely, the performance of the 
resulting estimator built from those samples can be very poor if the proposal pdf is 
not very similar to the full-conditionals. Hence, several iterations of the internal MH 
algorithm are typically required in order to achieve the desired level of performance 
(more as the proposal differs more from the target). See the numerical examples in 
Section 6 for further details on this issue.

3 Note that all of the previous methods typically follow the opposite strategy: 
start with a reduced number of support points and keep adding points in order to 
improve the proposal adaptively.
inner Monte Carlo method, thus leading to an approximate sam-
pler, unlike our scheme, which results in an exact sampler.

The resulting method is fast and extremely efficient (it yields 
virtually independent samples), even for highly multimodal and 
complicated targets. The dependence on the initial set of points 
is also drastically reduced, since the algorithm only requires an 
approximate knowledge of the effective support of the target pdf. 
Moreover, unlike previous approaches, the proposal is self-tuned 
during the initialization stage, without any adaptation afterwards. 
Hence, ergodicity is not an issue and the convergence of the chain 
to the target distribution is always guaranteed. For these reasons, 
we call the new method FUSS (“Fast Universal Self-tuned Sampler”) 
since, with this sampler, there is no “fuss” about convergence or 
tuning. The FUSS algorithm is particularly well suited for multi-
modal and spiky target densities (i.e., densities with several sharp 
and narrow modes), where virtually all of the existing MCMC tech-
niques fail. This kind of target pdfs often appears in practical ap-
plications, e.g., in ecology, bioinformatics and financial inference 
problems (see Sections 6 and 7).

The rest of the paper is organized as follows. Sections 2 and 
3 are devoted to recalling the general framework and describing 
the structure of the novel technique. Details about the proposal 
construction and generation are given in Section 4. Different prun-
ing algorithms are then introduced in Section 5. Sections 6 and 7
provide numerical results on several uni-variate and multi-variate 
pdfs, including a challenging parameter estimation problem in a 
chaotic system, as well as a multi-dimensional and multi-modal 
inference problem in financial signal processing. Finally, Section 8
contains some brief final remarks.

2. Problem statement

Bayesian inference often requires drawing samples from com-
plicated multivariate posterior pdfs, π(x|y) with x ∈ X D ⊆ R

D . 
A common approach, when direct sampling from π(x|y) is unfea-
sible, is using a Gibbs sampler [2]. At the i-th iteration, a Gibbs 
sampler obtains the d-th component (d = 1, . . . , D) of x, xd , by 
drawing from the full conditional pdf of xd given all the previously 
generated components [2,9,28], i.e.,

x(i)
d ∼ π̄ (xd|x(i)

1:d−1,x(i−1)

d:D ) = π̄ (xd) ∝ π(xd), (1)

where π̄ (xd) is the normalized target pdf, π(xd) denotes its unnor-
malized counterpart (note that we have dropped the dependence 
on x(i)

1:d−1 and x(i−1)

d:D to simplify the notation), xd ∈ X and the ini-

tial vector is typically drawn from the prior (i.e., x(0) ∼ π̄0(x)), but 
can also be set to some fixed value when no prior information is 
available or it is unreliable.

However, even sampling from the univariate pdfs in Eq. (1) can 
often be complicated. In these cases, a common approach is to 
use another Monte Carlo technique (e.g., rejection sampling (RS) 
or the Metropolis–Hastings (MH) algorithm) within the Gibbs sam-
pler, drawing candidates from a simpler proposal pdf,

p̄(x) ∝ p(x) = eW (x),

where p̄(x) and p(x) denote the normalized and unnormalized 
proposal respectively, W (x) is a “potential” function and x ∈ R. 
The best case occurs when an RS technique can be applied, since 
it yields independent and identically distributed (i.i.d.) samples. 
However, RS requires p(x) ≥ π(x) for all x ∈X , which may be hard 
to guarantee in practice. For instance, the adaptive rejection sam-
pling (ARS) technique can be applied only to log-concave target 
pdfs [15]. Thus, the use of another MCMC method becomes almost 
mandatory in practical applications. In this case, the performance 
of this approach depends strictly on the choice of p(x). Our aim 
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Table 1
General structure of the FUSS algorithm.

1. Initialization: Choose a set of support points, SM = {s1, . . . , sM }, such that 
s1 < s2 < . . . < sM .

2. Pruning: Remove support points according to a pre-specified criterion, at-
taining a final set Sm , with m < M .

3. Construction: Build a proposal function p(x|Sm) given Sm , using some 
appropriate pre-defined mechanism.

4. MCMC algorithm: Perform K steps of an MCMC method using p(x|Sm) as 
proposal pdf, thus yielding a set of samples {x1, . . . , xK }.

is designing an efficient fast sampler to draw from the univariate 
target pdf,

π(x) = eV (x), x ∈ X ⊆ R, (2)

where V (x) = log[π(x)] is a generic function, i.e., π(x) can be mul-
timodal and/or heavy tailed for example.

3. Structure of the algorithm

FUSS is an MCMC approach based on an independent proposal 
pdf, built through a simple interpolation procedure, like the ones 
shown in the next section. The general structure of FUSS is given 
in Table 1. The first 3 steps consist of an optimization procedure 
(applied only once, during the algorithm’s initialization stage), de-
signed to obtain a good proposal density, tailored to the shape 
of the target. Step 4 contains the MCMC iterations, which are re-
peated K times. In this work, we consider two possible techniques 
for Step 4 of FUSS. The first one is the well known Metropolis–
Hastings (MH) algorithm [2], which is recalled in Table 2. In this 
case, the resulting method is denoted as FUSS-MH. The second 
one is the rejection chain (RC) algorithm [29,30], which is shown 
in Table 3. In this case, a rejection sampling (RS) test is initially 
performed, and an MH step is applied only when a sample is 
accepted, thus ensuring that samples are drawn from the target 
pdf. We denote this second method as FUSS-RC. On the one hand, 
FUSS-RC is slower than FUSS-MH, since the chain does not move 
forward when a sample is rejected in the RS test. On the other 
hand, FUSS-RC yields samples with a lower correlation, due to the 
application of the RS test. We test and compare the performance of 
both schemes through numerical simulations in Sections 6 and 7. 
The notation a ∧ b, used in Tables 2 and 3, denotes the minimum 
between two real values, i.e., a ∧ b = min{a, b}.

3.1. Important remarks

It is important to emphasize some aspects of our approach. First 
of all, we remark again that steps 1 to 3 of the general FUSS al-
gorithm in Table 1 are performed only once. The success of the 
FUSS algorithms lies on the speed in performing these steps and 
the quality of the final proposal density. Indeed, since the shape of 
the proposal is tailored to π(x), the samples generated will always 
be virtually independent.

The initial support points in SM play the role of internal “tun-
ing” parameters of the FUSS algorithm. After the pruning step, 
the proposal p(x|Sm) is built according to the final support set, 
Sm with m < M , and remains fixed for the rest of the algorithm. 
Consequently, the FUSS techniques become standard non-adaptive 
MCMC methods after step 3, thus avoiding any issue about the er-
godicity.

The possibility of applying FUSS directly for drawing from mul-
tidimensional distributions depends on the ability to construct ef-
ficiently the proposal pdf via interpolation in dimensions higher 
than one (step 3 in the general structure of FUSS). Although 
a strategy for building a multidimensional proposal is described 
Table 2
The Metropolis–Hastings (MH) method used in Step 4 of the FUSS-MH algorithm.

1. Set k = 0 and choose x0.
2. Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).
3. Set xk+1 = x′ with probability

αM H = 1 ∧ π(x′)p(xk|Sm)

π(xk)p(x′|Sm)
. (3)

Otherwise, set xk+1 = xk with probability 1 − αM H .
4. If k ≤ K , set k = k + 1 and repeat from step 3.2. Otherwise, stop.

Table 3
The rejection chain (RC) method used in Step 4 of the FUSS-RC algorithm.

1. Set k = 0 and choose x0.
2. Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).
3. If u′ ≥ π(x′)

p(x′ |Sm)
, then go back to step 3.2.

4. If u′ ≤ π(x′)
p(x′ |Sm)

, set xk+1 = x′ with probability

αRC = 1 ∧ π(x′) [π(xk) ∧ p(xk|Sm)]

π(xk) [π(x′) ∧ p(x′|Sm)]
. (4)

Otherwise, set xk+1 = xk with probability 1 − αRC .
5. If k ≤ K , set k = k + 1 and repeat from step 3.2. Otherwise, stop.

in Section 4.3, in this work we focus our attention on the ap-
plication of FUSS within Gibbs sampling to draw from multi-
variate pdfs. This allows us to concentrate on designing very ef-
ficient procedures for sampling from univariate full-conditional 
pdfs. Furthermore, note also that all the operations in both al-
gorithms (FUSS-MH and FUSS-RC) can be implemented in the 
log-domain, thus evaluating the functions V (x) = log[π(x)] and 
W (x) = log[p(x|Sm)], which may be more convenient for many ap-
plications.

As a final remark, note that the FUSS-RC algorithm becomes 
a standard rejection sampler when p(x|Sm) ≥ π(x) for all x ∈ X , 
thus providing independent identically distributed (i.i.d.) samples 
from π̄ (x). Indeed, note that in this scenario the probability of ac-
cepting the new state is always αRC = 1, i.e., any candidate move-
ment that has survived the rejection test is automatically accepted. 
This is due to the fact that, in FUSS-RC after the rejection test, the 
proposed samples are distributed as

q̄(x) ∝ q(x) = π(x) ∧ p(x|Sm).

Finally, note also that q(x) is closer, in terms of L1 distance, to π(x)
than to p(x|Sm). Hence, FUSS-RC produces less correlated samples 
than FUSS-MH at the expense of an increased computational cost 
per iteration.4

3.2. Initialization and general strategy for FUSS

The initial set SM should cover all the high probability regions 
of the target π(x). In general, if no prior information about π(x) is 
available, we suggest the following FUSS approach: choose a large, 
dense, uniform initial grid of support points, such that si+1 − si = ε
for i = 1, . . . , M − 1, i.e.,

SM = {s1, s2 = s1 + ε, . . . , sM = s1 + (M − 1)ε},
in order to capture all the main features of the target. The grid 
could be thicker in the regions where the user desires to focus the 

4 In the extreme (and trivial) case when proposal and target are the same func-
tion (i.e. q(x) = π(x)), the correlation is zero, since we are drawing i.i.d. samples 
directly from the target.
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computational effort. The number of support points can then be 
drastically reduced according to some pre-defined pruning crite-
rion (see Section 5 for several proposed approaches), thus obtain-
ing the final set Sm , which is used to build a stepwise approxi-
mation of the target pdf. We emphasize again that the resulting 
proposal pdf is self-tuned and tailored to the target, but is non-
adaptive, since it does not vary during the run of the chain (i.e., it 
is “adapted” offline, before running the Markov chain).

4. Construction of the proposal density

In this section we describe in detail the construction of the 
proposal density, both for one-dimensional and multidimensional 
pdfs. In many applications it is advantageous to evaluate the target 
pdf in the log-domain. Therefore, in the following we only consider 
the construction of the proposal function in the log-domain.

4.1. One-dimensional construction

Let us consider the set of support points after the pruning step 
(see Section 5),

Sm = {s1, s2, . . . , sm} ⊂ X ,

where s1 < . . . < sm , and we define the intervals I0 = (−∞, s1], 
I j = (s j, s j+1] for j = 1, . . . , m − 1 and Im = (sm, +∞). The unnor-
malized proposal pdf is then given by

p(x|Sm) = eW (x),

where W (x) is built using a piecewise constant approximation for 
all the intervals, with the exception of the first and last intervals 
(i.e., the tails), where a non-constant function is used. Mathemati-
cally,

W (x) = wi(x) = max [V (si), V (si+1)] IIi (x), (5)

where 1 ≤ i ≤ m − 1 and

IIi (x) =
{

1, x ∈ Ii = (si, si+1],
0, x 
= Ii = (si, si+1]. (6)

The maximum in (5) is selected in order to satisfy the inequality, 
W (x) ≥ V (x), in as many regions as possible. Let us recall again 
that FUSS-RC becomes a standard rejection sampler (thus pro-
viding independent samples) when p(x|Sm) ≥ π(x) for all x ∈ X , 
which is equivalent to W (x) ≥ V (x) for all x ∈ X . In the first and 
last intervals, I0 and Im respectively, we have

W (x) = w j(x), j ∈ {0,m}, x ∈ I j,

where w j(x) represents a generic log-tail function. For instance, 
in order to have a light-tailed proposal, linear functions can be 
selected for w j(x) when j ∈ {0, m}. Figs. 1 and A.8 provide some 
specific examples. For further details, see Appendix A.

4.2. Variate generation from p̄(x)

The proposal p̄(x) ∝ p(x|Sm) is composed of m + 1 pieces, in-
cluding the two tails. Therefore, p(x|Sm)) can be seen as a finite 
mixture

p(x|Sm) =
m∑

i=0

ηiφi(x),

with 
∑m

i=0 ηi = 1, whereas φi(x) = exp (wi(x)) for all x ∈ Ii , and 
φi(x) = 0 for x /∈ Ii . Hence, in order to draw a sample from p̄(x) ∝
p(x|Sm), it is necessary to perform the following steps:
1. Compute the area Ai below each piece, i = 0, . . . , m. This is 
straightforward and can be done analytically, both for the rect-
angular pieces, Ai = (si+1 − si) exp(max [V (si), V (si+1)]) for 
i = 1, . . . , m − 1, and for the tails considered here (see Ap-
pendix A for further details). Then, normalize them,

ηi = Ai∑m
j=1 A j

, for i = 0, . . . ,m.

2. Choose a piece (i.e., an index j∗ ∈ {0, . . . , m}) according to the 
weights ηi for i = 0, . . . , m.

3. Given the index j∗ , draw x′ ∼ φ̄ j∗(x) ∝ φ j∗ (x) = exp
(

w j∗ (x)
)
.

It is important to remark that the process of calculating the areas 
Ai (and then the weights ηi ) only has to be performed once, before 
running the Markov chain.

4.3. Multidimensional construction

In this work, we focus on the application of the FUSS algorithm 
within a Gibbs sampler, drawing from univariate full-conditional 
densities. However, FUSS can also be applied to draw directly from 
a multivariate target density, π(x) with x ∈ X D ⊆ R

D with D > 1. 
This approach can be useful both for generating samples directly 
from the target (using FUSS as a stand-alone algorithm) and for 
updating jointly several variables within a block Gibbs sampler.

In this section, we describe briefly how to build a multidimen-
sional proposal equivalent to the one described in Section 4.1. Let 
us consider a bounded target density, π(x) with x ∈X D ⊆R

D and 
D > 1. Let us define now D sets of support points, each one form-
ing a grid within X :

Sm1 = {s1,1, . . . , s1,m1},
...

Smd = {sd,1, . . . , sd,md },
...

SmD = {sD,1, . . . , sD,mD }, (7)

where the elements of each set are sorted in ascending order, 
i.e., sd,1 < sd,2 < . . . < sd,md for all d = 1, . . . , D . This grid divides 
X D into 

∏D
d=1(md − 1) hyper-rectangles delimited by 2D vertices. 

Namely, a generic hyper-rectangle is defined as

I j1,..., jL =[s1, j1 , s1, j1+1]× [s2, j2 , s2, j2+1]× . . . × [sD, jD , sD, jD+1],
where jd ∈ {1, . . . , md − 1} with d = 1, . . . , D . Therefore, a grid is 
created with a rectangular boundary defined by

RB =
D∏

d=1

[
min sd, jd ,max sd, jd+1

]
.

Within RB , a piecewise constant proposal pdf can be easily built 
by evaluating the target pdf at the vertices of the hyper-rectangle 
I j1,..., jD , in a similar fashion to Eq. (5). Namely, denoting as 
V j1,..., jD the set of 2D vertices of I j1,..., jD , we can define

p(x|Sm1 , . . . ,SmD ) = max
x∈V j1,..., jD

π(x), ∀x ∈ I j1,..., jD ⊂ RB , (8)

i.e., p(x) is constant within I j1,..., jD , taking a value equal to the 
maximum value attained by the target π(x) at the 2D vertices of 
I j1,..., jD . Outside of RB , the proposal pdf can be constructed by 
using D independent exponential pieces, i.e.,
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Fig. 1. Example of the proposal construction. (a) Construction procedure with m = 9 support points, in the log-domain. In this case, we have two light tails (two straight lines 
in the log-domain). (b) The corresponding unnormalized densities p(x) = eW (x) and π(x) = eV (x) . (c) The corresponding normalized densities p̄(x) ∝ p(x) and π̄ (x) ∝ π(x).
Table 4
Pruning algorithm P1.

1. Given SM = {s1, . . . , sM }, decide the desired number m of final support 
points (or a rate of reduction m

M ).
2. Sort π(si), i = 1, . . . , M , in a decreasing order:

π(sr1 ) ≥ π(sr2 ) ≥ . . . . . ≥ π(srM ).

3. Return Sm = {sr1 , sr2 , . . . , srm }.

Table 5
Pruning algorithm P2.

1. Given SM = {s1, . . . , sM }, choose a value δ ∈ (0, 1).
2. Find all the support points, sk j ∈ SM , such that

π(sk j ) ≤ δ max
1≤i≤M

π(si). (10)

3. Return Sm = S M \{sk1 , . . . , skG }, where G is the number of points satisfying 
the inequality in Eq. (10).

p(x|Sm1 , . . . ,SmD ) =
D∏

d=1

exp (−ξdxd − ζd) , x /∈ RB , (9)

where every ξd and ζd are obtained applying the interpolation pro-
cedure described in Eq. (5) independently to each component of 
the state space. Note that the function in Eq. (9) can be analyti-
cally integrated and it is possible to draw easily from it, following 
the procedure described in Section 4.2.

5. Pruning algorithms

The computational cost of drawing from the proposal pdf p̄(x)
(and, as a consequence, the speed of the algorithm) depends on 
the number of support points used and on the complexity of 
constructing each piece. Since we are considering simple uniform 
pieces, the speed is then mainly hindered by the total number of 
points. Moreover, since we consider initially a thin grid (composed 
of a large number of support points), the application of some prun-
ing strategy to discard unnecessary points is essential in order to 
obtain an efficient algorithm. Indeed, the application of the prun-
ing step has two advantages: it speeds up the algorithm and allows 
the use of a large number of initial support points to capture all 
the important features of the target.

In the following, we present some possible pruning criteria, 
sorted in increasing level of complexity. For the sake of simplic-
ity, we assume a bounded target π(x). The first two procedures, 
Table 6
Pruning algorithm P3.

1. Given SM = {s1, . . . , sM }, choose a value δ > 0 and set S(0) = SM , G = M , 
r = 1 and L = max

0≤i≤M
|π(si+1) − π(si)|, with s0 = −∞ and sM = +∞.

2. While G 
= 0:
(a) Find all the support points sk j ∈ S(r) such that∣∣π(sk j+1) − π(sk j )

∣∣≤ δL, (11)

(b) Set S(r) = S(r−1) \ {sk1 , . . . , skG }, where G = |{sk1 , . . . , skG }|.
(c) Set r = r + 1.

3. Return Sm = S(r) .

P1 and P2, are shown in Tables 4 and 5 respectively. They are 
based on the simple idea of pruning all the points sr corresponding 
to “small” values of the target. They are the simplest and fastest 
approaches, but they also present several limitations: they are not 
advisable for heavy tailed distributions and their performance is 
quite sensitive to the dispersion of the target. Therefore, P1 and P2 
should be used carefully with complicated pdfs, although they can 
be very efficient for simple densities.

More refined pruning techniques can be easily devised. An ex-
ample is the procedure P3 in Table 6. The underlying idea is re-
moving support points in areas where the target is virtually flat, 
i.e., |π(si+1) − π(si)| ≈ 0. Moreover, if a uniform grid is used at 
the first iteration (i.e., si+1 − si = ε), the ratio π(si+1)−π(si)

ε is an 
estimation of the first derivative of the target. Hence, imposing a 
condition on |π(si+1) − π(si)| is equivalent to imposing a condi-
tion on the first derivative of π(x). Clearly, this procedure could 
be repeated until achieving the desired rate of reduction, as shown 
in Table 6, where the procedure is iterated until the pruning condi-
tion is no longer verified. Indeed, this criterion can be modified in 
order to obtain an optimal minimax pruning strategy, as described 
in the following section.

5.1. Optimal minimax pruning strategy

The performance of a rejection sampler or an independent 
Metropolis algorithm is related to the L1 distance between the tar-
get and the proposal [2],

D p|π (R) =
∞∫

−∞
|p(x|SM) − π(x)|dx. (12)

Taking into account the procedure used to build the proposal and 
described in detail in Section 4, we can write
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D p|π (R) =
M∑

j=0

D p|π (I j),

where D p|π (I j) denotes the local L1 distance within the i-th in-
terval (0 ≤ j ≤ M),

D p|π (I j) =
∫
I j

|p(x|SM) − π(x)|dx

=
s j+1∫
s j

|p(x|SM) − π(x)|dx, (13)

where s0 = −∞ and sM+1 = +∞, since I0 = (−∞, s1] and 
IM = [sM ,∞). Moreover, recall that s1 < s2 < . . . < sM .

The essential consideration now is the following: when a sup-
port point is removed, the distance between the target and the 
proposal generally increases, thus leading to a worse performance 
of the algorithm. Hence, an optimal criterion for pruning support 
points is discarding those points that lead to the smallest increase 
in the L1 distance between p(x) and π(x). This can be seen as a 
minimax pruning criterion, since its goal is minimizing the max-
imum increase in D p|π (R). Let us assume that the j-th support 
point (2 ≤ j ≤ M − 1) is pruned, then the distance between the 
target and the proposal becomes now

D̃ p|π (R) =
M∑

i=0
i 
= j−1, j

D p|π (Ei) = D p|π (R) + D p|π (I j−1 ∪ I j)

− [D p|π (I j−1) + D p|π (I j)
]
, (14)

where D p|π (I j−1 ∪ I j) denotes the distance between the target 
and the proposal in the new interval, I j−1 ∪ I j , created by remov-
ing the j-th support point. Hence, the optimal support point to 
be pruned is the one that minimizes the increase in the distance 
between p(x) and π(x), given by (14), i.e.,

k = arg min
2≤ j≤M−1

{
D p|π (I j−1 ∪ I j) − [D p|π (I j−1) + D p|π (I j)

]}
,

(15)

where the constant term D p|π (R) has been removed. Since the 
proposal p(x|SM) is a piecewise constant function, taking values

exp(wi) = exp(max [V (si), V (si+1)]),

with the exception of the tails, and considering a continuous target 
pdf, it can be easily shown that

D p|π (I j) ≤ B j−1, j+1 = (s j+1 − s j−1)|π(s j+1) − π(s j−1)|,
i.e., B j−1, j+1 is an upper bound on the distance D̃ p|π (R). There-
fore, by pruning the support point that minimizes B j−1, j+1 we are 
indeed minimizing the maximum possible increase in the L1 dis-
tance between the target and the proposal pdfs. This observation 
is the theoretical basis of the minimax optimal pruning strategy 
detailed in Table 7. The pruning algorithm P4 applies this crite-
rion recursively, performing several iterations through the support 
set and discarding those points such that B2r−1,2r+1 ≤ δL, where 
L = max1≤ j≤⌊m−1

2

⌋(s2 j+1 − s2 j−1)|π(s2 j+1) − π(s2 j−1)|. The algo-

rithm stops automatically when no support points are pruned at 
one iteration, thus providing the user with a black-box algorithm 
where only one easily interpretable parameter (δ) has to be cho-
sen. Fig. 2 depicts several examples of proposals obtained after 
applying the pruning P4 with different values of δ for a target pdf 
π(x) = 0.2N (x; −1, 1) + 0.8N (x; 3, 1), where N (x; μ, σ 2) denotes 
a Gaussian pdf with mean μ and variance σ 2.
Table 7
Pruning algorithm P4.

1. Choose a value δ > 0. Given SM = {s1, . . . , sM }, set S(0) = SM , m = M , 
n = 0 and

L = max
1≤ j≤

⌊
m−1

2

⌋(s2 j+1 − s2 j−1)|π(s2 j+1) − π(s2 j−1)|.

2. FOR r = 1, . . . , R = ⌊m−1
2

⌋
:

(a) Compute br = (s2r+1 − s2r−1)|π(s2r+1) − π(s2r−1)|.
(b) If br ≤ δL, set S(r) = S(r−1) \ {s2r} and n = n + 1.
(c) Otherwise, if br > δL, set S(r) = S(r−1) .

3. If n > 0 set n = 0, S(0) = S(R) , m = |S(R)| and repeat from step 2.
4. Otherwise, if n = 0, return Sm = S(R) .

6. Numerical examples for univariate densities

In this section, we consider two different univariate target den-
sities in order to test the performance of FUSS as a stand-alone 
algorithm: the Nakagami pdf (widely used to simulate fading in 
wireless communication systems) and a Gaussian mixture that 
contains four modes (three of them very narrow). The FUSS algo-
rithm is compared to other two well-known MCMC methods: the 
Metropolis–Hastings (MH) algorithm and the slice sampler.

6.1. Unimodal target pdf: Nakami distribution

First of all we consider a Nakagami target distribution, i.e.,

π̄ (x) ∝ π(x) = x2β−1 exp

(
− β

�
x2
)

, x > 0, (16)

with β ≥ 0.5 and � > 0. The Nakagami distribution is widely used 
for the simulation of fading channels in wireless communications 
[31–33]. When β is an integer or half-integer (i.e., β = n

2 with 
n ∈ N), independent samples can be directly generated through 
the square root of a sum of squares of n zero-mean i.i.d. Gaus-
sian random variables [33]. However, for generic values of β there 
is not direct method to sample from it, and several alternative 
approaches have been considered [31,32]. Here, our goal is to esti-

mate the expected value of X ∼ π̄ (x), μ = E[X] = 
(β+ 1
2 )


(β)

√
�
β

, and 

the variance, σ 2 = � 

(
1 − 1

β

(

(β+ 1

2 )


(β)

)2
)

for � = 1 and β = 4.6.

We apply the FUSS methods using different pruning procedures 
(P2, P3 and P4) with different values of the threshold parameter δ. 
We always use an initial set SM = {0.01, 0.02, 0.03, . . . , 103}, i.e., 
si = 10−2 · i for i = 1, . . . , M = 105 points. We also test a standard 
MH technique [2] with a random walk proposal

p̄(xk|xk−1) ∝ exp

{
−(xk − xk−1)

2

2σ 2
p

}
,

with different values of σp . Furthermore, we consider another 
well-known methodology, the slice sampling technique
[2, Chapter 8]. In order to obtain a fair (and reproducible) compar-
ison of the computational time, we use the corresponding Matlab 
functions provided by MathWorks: mhsample.m and slice-
sample.m respectively.

For all these techniques, we choose x0 ∈ U [0, 10], K = 5000, 
and we consider all the generated samples without removing any 
burn-in period. We have performed 3 · 104 independent runs. The 
results are shown in Tables 8 and 9. These tables provide the 
Mean Square Errors (MSE) in the estimation of μ and σ 2, the lin-
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Fig. 2. Examples of proposal construction starting with SM = {−100 : 0.01 : 100} and after applying the pruning algorithm P4: (a) with the final number of points m = 37,
(b) m = 18, (c) and m = 10, respectively. The considered target pdf is showed in dashed line.

Table 8
Results of FUSS for the Nakagami target (β = 4.6 and � = 1) with different pruning procedures (P2, P3 and P4) and K = 5000. The table shows the MSE in the estimation 
of the mean and variance (μ and σ 2), the correlation at lag-1 (ρ(1)), the acceptance rate (AR) for FUSS-RC (for FUSS-MH AR = 1, since there is no RS test), the number of 
support points in the final grid (m), and the time required by the whole algorithm (normalized w.r.t. the time required by a standard MH sampler).

Pruning FUSS-MH FUSS-RC

δ = 0.9 δ = 0.5 δ = 0.3 δ = 0.01 δ = 0.9 δ = 0.5 δ = 0.3 δ = 0.01

P2 MSE(μ) 3.13 ·10−5 2.15 ·10−5 1.68 ·10−5 1.10 ·10−5 1.12 ·10−5 1.09 ·10−5 1.06 ·10−5 1.05 ·10−5

MSE(σ 2) 3.94 ·10−6 2.25 ·10−6 1.65 ·10−6 1.05 ·10−6 1.21 ·10−6 1.13 ·10−6 1.12 ·10−6 1.12 ·10−6

ρ(1) 0.4811 0.3288 0.2142 0.0087 −8.77 ·10−4 −2.26 ·10−4 −1.30 ·10−4 −1.05 ·10−4

AR 1 1 1 1 0.3926 0.6354 0.7677 0.9779
m 23 56 73 139 23 56 73 139
Time 0.6683 0.6742 0.6781 0.6875 1.3476 0.8263 0.7927 0.7328

P3 MSE(μ) 1.11 ·10−5 1.09 ·10−5 1.06 ·10−5 1.05 ·10−5 1.10 ·10−5 1.07 ·10−5 1.05 ·10−5 1.05 ·10−5

MSE(σ 2) 1.20 ·10−6 1.16 ·10−6 1.15 ·10−6 1.13 ·10−6 1.14 ·10−6 1.11 ·10−6 1.11 ·10−5 1.10 ·10−6

ρ(1) 0.0200 0.0124 0.0077 0.0053 −2.35 ·10−4 −2.50 ·10−4 −2.80 ·10−4 −1.85 ·10−4

AR 1 1 1 1 0.9570 0.9630 0.9787 0.9830
m 50 88 106 166 50 88 106 166
Time 0.6712 0.6816 0.6859 0.7019 0.7676 0.7408 0.7424 0.7426

P4 MSE(μ) 1.10 ·10−5 1.09 ·10−5 1.06 ·10−5 1.05 ·10−5 1.10 ·10−5 1.07 ·10−5 1.05 ·10−5 1.05 ·10−5

MSE(σ 2) 1.19 ·10−6 1.14 ·10−6 1.12 ·10−6 1.10 ·10−6 1.13 ·10−6 1.10 ·10−6 1.09 ·10−6 1.08 ·10−6

ρ(1) 0.0133 0.0096 0.0076 0.0053 1.27 ·10−4 −2.61 ·10−4 −2.45 ·10−4 −2.62 ·10−4

AR 1 1 1 1 0.9666 0.9769 0.9800 0.9832
m 71 109 121 177 71 109 121 177
Time 0.6849 0.6937 0.6957 0.7105 0.7339 0.7397 0.7380 0.7502

Table 9
Results of the standard MH and slice sampling methods for the Nakagami target (β = 4.6 and � = 1) with different standard deviations (σp ) and K = 5000. The meaning of 
the parameters displayed is the same as in Table 8.

σp = 0.2 σp = 0.5 σp = 0.8 σp = 1 σp = 2 σp = 3 σp = 4

MH MSE(μ) 0.0021 3.95 ·10−4 1.98 ·10−4 1.5210−4 1.43 ·10−4 1.90 ·10−4 2.52 ·10−4

MSE(σ 2) 0.0513 0.0091 0.0039 0.0027 9.20 ·10−4 6.18 ·10−4 5.69 ·10−4

ρ(1) 0.8935 0.7495 0.7433 0.7611 0.8389 0.8808 0.9043
AR 1 1 1 1 1 1 1
Time 1 1 1 1 1 1 1

Slice sampling
MSE(μ) = 1.24 · 10−5 MSE(σ 2) = 2.27 · 10−5 ρ(1) = 0.0229 AR = 1 Time = 2.5037
ear correlation among the samples at lag-1, ρ(1), the acceptance 
rate (0 ≤ AR ≤ 1) in the rejection sampling (RS) step,5 the final 
number of support points after the pruning stage, m, and the com-
putational time for the whole algorithm (normalized w.r.t. the time 
required by the standard MH method).

5 We remark that the AR is not the acceptance probability α in the FUSS-MH and 
MH methods. The AR is the averaged number of samples accepted in the rejection 
sampling step of FUSS-RC, which is the only algorithm that includes an RS step. 
This means that the total number of iterations of FUSS-RC is greater than K = 5000
(depending on the acceptance rate), whereas for the other methods AR = 1 and 
K = 5000.
We can see that both FUSS algorithms (FUSS-MH and FUSS-RC) 
always outperform the standard MH and slice sampling techniques. 
In all cases, the FUSS algorithms are faster, with the only excep-
tion of FUSS-RC using P2 and δ = 0.9, which is slightly slower 
than MH, but faster than slice sampling. Moreover, both FUSS-MH 
and FUSS-RC attain the performance of an exact sampler in the es-
timation of μ, since

MSE(μ) ≥ σ 2

K
= 1.0560 · 10−5.

This optimal behavior of both samplers is due to the fact that they 
are able to draw virtually independent samples (lag-1 correlation 
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Fig. 3. (a) The multimodal target pdf π(x) in Eq. (17). (b) Log-MSE as function of K
103 for the slice (triangles) and the MH (squares) methods, with σp = 20. The solid line 

shows the log-MSE, log(0.3526) = −1.0424, of FUSS-MH-P4 with δ = 0.01, achieved using only K = 200. (c) Log-time (normalized w.r.t. the time required by the standard 
MH sampler with K = 200) as function of K for the slice (triangles) and the MH (squares) methods. The solid line corresponds to FUSS-MH-P4 with δ = 0.01 and K = 200.
ρ(1) < 10−3 in all cases for FUSS-RC and ρ(1) < 10−2 for FUSS-
MH with P4 and δ ≥ 0.5), just like the ones that would be obtained 
from an exact sampler. On the one hand, FUSS-MH is always faster 
than FUSS-RC, due to the lack of the rejection sampling (RS) test. 
On the other hand, FUSS-RC provides better results (thanks to this 
RS test) and is still faster than the standard MH and the slice sam-
pler. Note also that the time required by FUSS-MH always increases 
when m becomes larger, whereas in FUSS-RC the computational 
cost can also decrease when m grows due to an improvement in 
the acceptance rate. Finally, let us remark that the performance of 
the pruning procedures P3 and P4 is clearly better than P2. As ex-
pected, the best one is P4, owing to the fact that P4 selects the 
final support points according to a minimax optimality criterion, 
as discussed in Section 5.1.

This results in a better quality of the estimators (in terms 
of MSE), a lower correlation among samples (i.e., a smaller 
value of ρ(1)), and a reduced computational time (especially for 
FUSS-RC, as the AR increases).6

6.2. Multimodal target pdf: mixture of Gaussians

In this second example we test the FUSS approach to draw from 
a multimodal target density. More specifically, we consider a mix-
ture of 4 Gaussian pdfs,

π̄ (x) =
4∑

i=1

N (x;μi,σ
2
i ), (17)

where μ1 = −7, σ1 = 0.1, μ2 = 0, σ2 = 1, μ3 = 8, σ3 = 0.2, 
μ4 = 15 and σ4 = 0.1. This choice leads to 4 clearly separated 
modes (three of them quite narrow), as shown in Fig. 3(a).7 We 
perform K iterations of the chain, taking into account all the gen-
erated samples (K ) to perform the estimation (without removing 
any burn-in period). We test again the performance of the FUSS al-
gorithm, the standard MH method with a Gaussian random walk 
proposal pdf (with variance σ 2

p ) and the slice sampler, as in the 
previous example. Furthermore, we also apply two more sophisti-
cated MCMC techniques: the Metropolis adjusted Langevin algorithm

6 The benefit of using P4 can be seen more clearly in the next example, where a 
multimodal target pdf with narrow modes and a smaller number of iterations K is 
considered.

7 Note that, from a Monte Carlo point of view, the problem becomes harder as 
the number of modes increases. This is due to the fact that our interest here is 
not discovering the number of modes (as in spectral estimation), but being able 
to construct a proposal that mimicks the target as closely as possible. Therefore, 
having clearly separated and narrow modes results in a more challenging problem 
than having partially overlapping (and thus wider) modes.
(MALA) [34] and the Hamiltonian Monte Carlo (HMC) method [35]. 
Both methodologies incorporate the gradient information in their 
respective proposal mechanisms. Hence, they should provide a bet-
ter performance whenever it is possible to evaluate the gradient of 
the target. However, they are also more costly (compared to a stan-
dard MH method) due to the evaluations of the gradient required. 
We consider a Gaussian pdf with a standard deviation σp = 20
for the diffusion noise in MALA and for the kinetic distribution in 
HMC.8 We test different values of the discretization parameter (ε) 
for MALA, and different values of ε and L (length of the trajectory) 
in HMC.9

For the sake of simplicity, we have only considered the 
FUSS-MH algorithm in this example.10 For all the different al-
gorithms, the initial state of the chain has been chosen as x0 ∼
U([−10, 20]). As in the previous example, we have used the Mat-
lab functions directly provided by MathWorks for the MH and slice 
samplers (mhsample.m and slicesample.m respectively). For 
HMC we have used the code provided in [36, Chapter 30], whereas 
for MALA we have developed our own Matlab code, since there is 
no code publicly available as far as we know. For FUSS-MH, we use 
an initial set SM = {−103, −103 + 0.01, . . . , 103 − 0.01, 103}, i.e. 
SM = {s1, . . . , sM} with si = s1 + (i − 1)ε for s1 = −103, ε = 10−2

and M = 2 · 105 + 1 points.
Table 10 shows the results (using K = 200 samples, different 

pruning algorithms (P2, P3 and P4) and values of δ) for FUSS-
MH: MSE in the estimation of the mean (μ) and variance (σ 2) 
of the target, correlation at lag-1 (ρ(1)), number of final support 
points (m), and time required by the whole algorithm (normal-
ized w.r.t. the time required by the standard MH algorithm using 
K = 200). The results of the standard MH (using again K = 200
samples and different values of σp) are provided in Table 11, 
whereas Table 12 shows the results (in terms of MSE and elapsed 
time) for the MH and slice samplers when the number of itera-
tions of the Markov chain (K ) is increased from K = 200 up to 
K = 2 · 104. Finally, Tables 13 and 14 provide the results for MALA 
and HMC respectively. Furthermore, in Figs. 3(b) and (c) we depict 
respectively the log-MSE and log-time of MH and slice sampling as 
function of K , compared to the results for FUSS-MH (which do not 
depend on K ). All the results are averaged over 3 · 104 runs.

8 The value σp = 20, used both in MALA and HMC, corresponds to the optimal 
scale parameter for a random walk MH method obtained in the simulations (see 
Table 11).

9 Note that MALA can also be interpreted as a special case of HMC with 
L = 1 [35].
10 As shown in the previous numerical example, FUSS-RC provides in general bet-

ter results at the expense of a slight increase in the computational time.
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Table 10
Results of FUSS-MH for the mixture of Gaussians target in Eq. (17) using different pruning procedures (P2, P3 and P4) and K = 200. The table 
shows the MSE in the estimation of the mean and variance (μ and σ 2), the correlation at lag-1 (ρ(1)), the number of support points in the 
final grid (m), and the time required by the whole algorithm (normalized w.r.t. the time required by the standard MH sampler with K = 200).

Pruning FUSS-MH

δ = 0.9 δ = 0.5 δ = 0.3 δ = 0.01

P2 MSE(μ) 11.38 7.33 4.30 0.4680
MSE(σ 2) 409.02 288.35 211.78 19.52
ρ(1) 0.9142 0.8917 0.8419 0.1468
m 18 46 103 662
Time 1.03 1.04 1.06 1.17

P3 MSE(μ) 1.7683 1.1368 0.8686 0.3679
MSE(σ 2) 78.96 49.82 35.92 15.3513
ρ(1) 0.6693 0.5284 0.4224 0.0296
m 61 99 135 497
Time 1.20 1.27 1.31 1.35

P4 MSE(μ) 0.3786 0.3662 0.3638 0.3526
MSE(σ 2) 15.53 15.31 15.10 14.53
ρ(1) 0.0446 0.0306 0.0247 0.0093
m 145 195 223 605
Time 1.23 1.26 1.28 1.40

Table 11
Results of the standard MH method for the mixture of Gaussians target in Eq. (17) using K = 200. The table shows the MSE in the estimation 
of the mean and variance (μ and σ 2), the correlation at lag-1 (ρ(1)), and the time required by the whole algorithm (normalized to 1 in order 
to compare with the alternative methods). The best results are obtained for σp = 20, but the MSE is always larger than using FUSS-MH.

σp = 2 σp = 8 σp = 14 σp = 20 σp = 25 σp = 30

MH MSE(μ) 34.92 24.64 19.62 19.46 19.80 20.57
MSE(σ 2) 4.43 · 103 1.36 · 103 1.13 · 103 1.09 · 103 1.37 · 103 1.51 · 103

ρ(1) 0.7481 0.9465 0.9425 0.9424 0.9445 0.9459
Time 1 1 1 1 1 1

Table 12
Results of the slice sampling and the standard MH method for the mixture of Gaussians target in Eq. (17) using σp = 20 and varying the total number of iterations of the 
chain (K ) from K = 200 up to K = 2 · 104. The table shows the MSE in the estimation of the mean and variance (μ and σ 2), and the time required by the whole algorithm 
(normalized w.r.t. the time required by the standard MH sampler with K = 200).

K = 200 K = 103 K = 2 · 103 K = 5 · 103 K = 104 K = 1.5 · 104 K = 2 · 104

MH 
σp = 20

MSE(μ) 19.46 6.16 3.16 1.35 0.6735 0.4540 0.3341
MSE(σ 2) 1.09 · 103 263.36 123.37 44.69 22.48 14.45 10.79
Time 1 4.55 8.75 21.51 41.48 61.44 81.06

Slice MSE(μ) 22.13 6.08 3.25 1.26 0.6136 0.4177 0.2911
MSE(σ 2) 1.10 · 103 171.13 68.91 23.98 10.48 7.40 5.85
Time 2.37 11.04 21.62 52.66 103.78 154.38 204.57

Table 13
Results of MALA [34] for the mixture of Gaussians target in Eq. (17) using K = 1.5 · 104, σp = 20 (the standard deviation of the driving noise), and varying the parameter ε . 
The table shows the MSE in the estimation of the mean and variance (μ and σ 2), and the time required by the whole algorithm (normalized w.r.t. the time required by the 
standard MH sampler with K = 200).

K = 1.5 · 104

ε = 0.05 ε = 0.1 ε = 0.5 ε = 0.7 ε = 0.8 ε = 0.9 ε = 1 ε = 1.2 ε = 1.5

MALA MSE(μ) 0.4686 0.5038 0.5269 0.4135 0.4616 0.4701 0.4413 0.4748 0.4828
MSE(σ 2) 14.09 16.80 18.03 14.61 14.69 15.36 11.19 13.75 14.73
Time 61.59 61.59 61.59 61.59 61.59 61.59 61.59 61.59 61.59
Taking into account all these results we can obtain the follow-

ing conclusions:

• For a fixed value of K , FUSS-MH outperforms MH, slice sam-

pling, MALA and HMC. All of these methods are able to ob-

tain similar results to FUSS when properly parameterized, but 
they are much more sensitive to the choice of the param-

eters and they require a much larger number of iterations 
(K = 2 · 104 for MH and slice sampling, and K = 1.5 · 104 for 
MALA and HMC), thus implying a much higher computational 
cost.
• The results also highlight the importance of using an adap-
tive or self-tuned method: the results vary considerably with 
the choice of the parameters for MH, slice sampling, MALA 
and HMC. Furthermore, FUSS-MH attains the theoretical limit 
(in terms of MSE in the estimation of μ) for indepen-

dent samples, MSE(μ) ≥ σ 2

K = 68.765
200 = 0.3438 for K = 200, 

whereas the MSE of the competing methods is always much 
higher than this limit, MSE(μ) ≥ σ 2

K = 68.765
2·104 = 3.438 · 10−3

for K = 2 · 104. This is due to the fact that FUSS-MH is 
able to adapt the entire shape of the proposal pdf accord-
ing to the target, thus providing virtually independent sam-
ples.
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Table 14
Results of HMC for the mixture of Gaussians target in Eq. (17) using the code in [36, Chapter 30] with K = 1.5 · 104, σp = 20 (σ 2

p represents the inverse of the mass in the 
kinetic energy equation), and varying the parameters ε (the discretization step size of the leapfrog method within HMC [35]) and L (the total number of leapfrog steps). 
The table shows the MSE in the estimation of the mean and variance (μ and σ 2), and the time required by the whole algorithm (normalized w.r.t. the time required by the 
standard MH sampler with K = 200).

K = 1.5 · 104

L = 2 L = 3 L = 5 L = 8 L = 9 L = 10 L = 15

HMC 
ε = 0.1

MSE(μ) 1.06 0.9829 0.9453 0.5058 0.3987 0.6217 0.8448
MSE(σ 2) 21.98 20.56 18.83 15.42 16.74 39.42 61.15
Time 62.63 73.28 79.94 131.68 141.08 156.76 215.58

HMC 
ε = 0.2

MSE(μ) 0.5295 0.3445 1.05 0.8356 0.5183 0.9699 0.4694
MSE(σ 2) 10.52 10.21 25.11 25.75 35.53 28.41 21.47
Time 62.63 73.28 79.94 131.68 141.08 156.76 215.58

HMC 
ε = 0.5

MSE(μ) 0.4408 0.5173 0.5213 0.3259 1.12 0.6557 0.6134
MSE(σ 2) 12.53 13.76 13.91 21.40 24.93 30.13 25.05
Time 62.63 73.28 79.94 131.68 141.08 156.76 215.58
• Tables 13 and 14 show that, unlike FUSS, MALA and HMC 
suffer when applied to multimodal distributions with nar-
row modes. In this specific scenario, the use of gradient in-
formation can even reduce the exploratory behavior of the 
chain for some values of the parameters. The results for 
MALA and HMC are comparable to the standard MH method 
(with a similar number of samples, K = 2 · 104) and to FUSS-
MH-P4 (δ = 0.01) using only K = 200 samples. Namely, us-
ing FUSS we can save more than 98% of the computational 
time.

• FUSS-MH using the pruning procedure P4 attains virtually 
the theoretical bound for the MSE (i.e., 0.3438 for the esti-
mation of μ using K = 200), achievable using independent 
samples. Similar results are attained using different choices of 
the threshold δ (showing the robustness of the approach w.r.t. 
the parameterization), due to the fact that FUSS-MH-P4 pro-
duces virtually independent samples.

7. Numerical examples for multivariate densities

In this section, we consider four multi-variate densities in or-
der to test the performance of FUSS-within-Gibbs: two bivariate 
multimodal pdfs, a challenging problem of parameter estimation in 
a chaotic system, and a high-dimensional and multi-modal prob-
lem in financial signal processing. The FUSS algorithm is com-
pared to other two well-known MCMC-within-Gibbs methods: 
the Metropolis–Hastings (MH) algorithm and adaptive rejection 
Metropolis sampling (ARMS). Furthermore, the bivariate version of 
the stand-alone FUSS algorithm is also tested in Section 7.2, show-
ing that it can outperform all the MCMC-within-Gibbs approaches.

The FUSS-within-Gibbs algorithm is summarized in Table 15. 
The algorithm in Table 15 is essentially a standard Gibbs sampler, 
where FUSS is used to draw from the full-conditionals at each it-
eration. Note that the set of support points is always re-calculated 
before applying the FUSS algorithm. This leads to an optimal de-
sign of the proposal at each iteration and does not result in a large 
computational cost, as shown in the simulations. However, if the 
target is not expected to change substantially between two con-
secutive Gibbs iterations, the update could be performed only once 
out of P iterations (as done in the griddy Gibbs sampler), thus 
reducing even more the computational cost. Note also that the 
alternative methods tested (MH-within-Gibbs and ARMS-within-
Gibbs) are similar to the algorithm in Table 15, but removing steps 
2(b) and 2(c) and using instead some other proposal function, as 
described later.
Table 15
General structure of the FUSS-within-Gibbs algorithm.

1. Initialization: Select the number of Gibbs iterations, NG , and the number 
of FUSS iterations per Gibbs iteration, K . Choose a set of support points, 
SM = {s1, . . . , sM }, such that s1 < s2 < . . . < sM .

2. FOR t = 1, . . . , NG :
FOR i = 1, . . . , D:

(a) Let the target be π(x) = π(x(t)
i |x(t)

1 , . . . , x(t)
i−1, x(t)

i+1, . . . , x(t−1)
D ).

(b) Apply some of the pruning procedures described in Section 5, 
using the initial support set SM and the target π(x), to obtain 
the final support set S(t)

i .

(c) Build a proposal function p(x|S(t)
i ), using some appropriate pre-

defined mechanism, as described in Section 4.
(d) Perform K steps of an MCMC method using p(x|S(t)

i ) as pro-

posal pdf. Take the last one as x(t)
i .

7.1. FUSS-within-Gibbs: simple bivariate pdf

In order to show the importance of using an adequate MCMC 
technique within a Gibbs sampler, in this section we provide a 
simple example using different methods for drawing from the full-
conditional pdfs. Let us consider the bivariate target density

π̄ (x1, x2) ∝ π(x1, x2)

= exp

(
− (x2

1 − A + Bx2)
2

4
− x2

1

2σ 2
1

− x2
2

2σ 2
2

)
, (18)

where A = 16, B = 10−2 and σ 2
1 = σ 2

2 = 104

2 . Densities with this 
analytic form are often used in the literature to evaluate the 
performance of different Monte Carlo algorithms [37,38]. We ap-
ply a Gibbs sampler to draw from π̄ (x1, x2). To generate sam-
ples from the full conditional pdfs, π(x1|x2) and π(x2|x1), we 
use FUSS-MH-P4 with δ = 0.9, starting with a uniform grid SM =
{−104, −104 + 0.01, . . . , 104 − 0.01, 104}, i.e. SM = {s1, . . . , sM}
with si = s1 + (i − 1)ε for s1 = −104, ε = 10−2 and M = 2 · 106 + 1
points. We also apply the ARMS method within the Gibbs sam-
pler [16]. ARMS uses an interpolation procedure to build the 
proposal using a set of support points, similarly to FUSS. How-
ever, unlike FUSS, ARMS starts with few support points and in-
corporates new ones adaptively. We choose for ARMS the initial 
set {−10, −6, −4.3, −0.01, 3.2, 3.8, 4.3, 7, 10}. Finally, we also con-
sider a standard MH algorithm with a random walk proposal

p̄(x(t)
i |x(t−1)

i ) ∝ exp

(
− (x(t)

i − x(t−1)
i )2

2σ 2
p

)
,

with σp ∈ {1, 2, 10}, initial state x(0)
i ∈ U([−5, 5]), and x(t)

i denoting 
the value of xi (i ∈ {1, 2}) at the t-th iteration of the MH algorithm. 
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Table 16
Mean absolute error (MAE) in the estimation of the first component of four statistics (mean, variance skewness and kurtosis) of π̄ (x1, x2), 
and simulation time for the whole algorithm (normalized w.r.t. the time required by ARMS using K = 50). All the techniques are used within 
a Gibbs sampler (NG = 2000 total iterations), performing K iterations per Gibbs iteration for each full-conditional.

Technique K MAE Time

Mean Variance Skewness Kurtosis

FUSS-MH-P4 
δ = 0.9

3 0.0735 0.0365 0.0369 0.0022 0.343
5 0.0735 0.0361 0.0367 0.0022 0.343

10 0.0724 0.0354 0.0365 0.0021 0.345
50 0.0721 0.0355 0.0364 0.0021 0.348

ARMS 3 3.408 11.580 3.384 11.572 0.077
5 3.151 9.839 2.650 7.079 0.116

10 2.798 7.665 2.024 4.124 0.223
50 1.918 3.407 1.134 1.292 1.000

MH σp = 1 100 3.509 12.308 3.671 13.666 0.540
σp = 2 100 1.756 3.077 0.9782 0.9633 0.540
σp = 10 100 0.0756 0.0376 0.0368 0.0025 0.540
σp = 1 1000 3.508 12.302 3.665 13.624 3.229
σp = 2 1000 1.601 2.560 0.8741 0.7691 3.229
σp = 10 1000 0.0743 0.0360 0.0363 0.0021 3.229

Fig. 4. (a) Contour plot of the target pdf π̄(x1, x2). (b) MAE in estimation of the kurtosis (first component) as a function of K , using ARMS-within-Gibbs (squares) and 
FUSS-within-Gibbs (circles). (c) Time required by ARMS (squares) and FUSS (circles) within the Gibbs sampler as a function of K (normalized w.r.t. the time required by 
ARMS-within-Gibbs using K = 50).
We perform NG = 2000 iterations of the Gibbs sampler, using all 
the samples to estimate four statistics which involve the first four 
moments of the target: mean, variance, skewness and kurtosis. In 
each iteration, we draw K samples from each full-conditional, tak-
ing only the last one and continuing the Gibbs cycle.

Table 16 provides the numerical results (averaged over 1000
runs) for the Mean Absolute Error (MAE) and the time required by 
the Gibbs sampler. The time is normalized by considering 1 to 
be the time elapsed when using ARMS-within-Gibbs with K = 50. 
Fig. 4(a) illustrates the target π̄ (x), whereas Figs. 4(b)–(c) depict 
the MAE and the time required by ARMS and FUSS-MH-P4 as 
function of K . Observing Table 16 and Fig. 4(b), we notice that 
FUSS-MH-P4 outperforms ARMS for all values of K in the estima-
tion of the four central moments: FUSS-MH-P4 always achieves 
MAEs close to zero. As shown also in Fig. 4(c), FUSS-MH-P4 is 
slightly slower than ARMS for K ∈ {3, 5, 10} due to the pruning 
stage. However, the computational time in FUSS-MH-P4 remains 
virtually constant with K , whereas in ARMS it increases with K , 
since ARMS keeps adding new support points to improve the pro-
posal pdf, hence becoming more costly for K > 15. Regarding the 
use of MH-within-Gibbs, the results depend largely on the choice 
of the variance of the proposal, σ 2

p , showing the need of adap-
tive or self-tuned MCMC strategies. Indeed, for an inadequate scale 
parameter (e.g., σp = 1 or σp = 2), even the use of K = 1000 pro-
vides bad results. On the other hand, when a good σp is selected 
(i.e., σp = 10), MH with K = 100 and K = 1000 provides virtually 
the same performance as FUSS-MH-P4, although at the expense of 
an increased computational cost.

7.2. FUSS-within-Gibbs and bivariate FUSS: donut target pdf

In order to assess the performance of the FUSS algorithm when 
the variables of the target are strongly correlated, we consider here 
a bivariate donut target density:

π(x1, x2) = exp

(
− (x2

1 − A + Bx2
2)

2

4

)
, (19)

with A = 10 and B = 0.01. Fig. 5(a) depicts the proposal approx-
imation of π(x1, x2), obtained using the multi-variate version of 
FUSS described in Section 4.3, which is virtually undistinguishable 
from the true target pdf. Moreover, Figs. 5(a) and (b) illustrate two 
slices of the target function π(x1, x2), obtained fixing x2 = 10 and 
x1 = 3 respectively. Note that both the support and the shape of 
the conditional pdfs vary considerably.

We use different Monte Carlo techniques in order to compute 
the variances in the diagonal of the covariance matrix of π(x1, x2), 
σ 2

1 ≈ 5 and σ 2
2 ≈ 500 respectively. We calculate the relative error

(that is the ratio of the mean absolute error (MAE) and the true 
value) for each component and compute the arithmetic mean of 
the two values obtained.

First of all, we apply two MCMC-within-Gibbs techniques (per-
forming NG = 1000 iterations of the Gibbs sampler): FUSS-MH-P2 
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Fig. 5. (a) Bidimensional proposal function obtained by the FUSS procedure: it is an excellent approximation of the target function π(x1, x2). (b) Slice of the target function 
π(x1, x2) keeping fixed x2 = 10. (c) Slice of the target function π(x1, x2) keeping fixed x1 = 3.

Table 17
Mean relative error in the estimation of the trace of the covariance matrix, for the donut target pdf (σ 2

1 = 5 and σ 2
2 = 500) using MH or FUSS within 

a Gibbs sampler with NG = 1000 iterations. We use K = 10 steps for each iteration of Gibbs for MH, whereas only K = 3 for FUSS.

Technique within Gibbs K Relative error

σp = 2 σp = 5 σp = 8 σp = 10 σp = 12 σp = 15 σp = 20

MH 10 0.6654 0.4994 0.0949 0.1118 0.1889 0.2479 0.3046

FUSS-MH-P2, δ = 0.01 3 0.0856

Table 18
Mean relative error in the estimation of the trace of the covariance matrix, for the donut target pdf (σ 2

1 = 5 and σ 2
2 = 500) applying directly MH and 

FUSS-MH in the bidimensional space, with K = 1000 iterations for MH and different values of K for the FUSS scheme.

Technique K Relative error

σp = 2 σp = 5 σp = 8 σp = 10 σp = 12 σp = 15 σp = 18 σp = 20 σp = 25

Bidim. MH 1000 0.5889 0.4209 0.3168 0.2819 0.2560 0.2337 0.2161 0.2301 0.2426

Bidim. FUSS-MH-P2, 
δ = 0.01

30 0.1947
50 0.1249

100 0.0731
1000 0.0225
with δ = 0.01 and an MH scheme. For the FUSS technique, we 
consider only K = 3 steps for each full conditional and SM =
{−104 : 0.1 : 104}. For the MH scheme, we set K = 10 and use 

a random walk proposal p̄(x(t)
i |x(t−1)

i ) ∝ exp

(
− (x(t)

i −x(t−1)
i )2

2σ 2
p

)
for 

i ∈ {1, 2}. We test several values of σp . The initial value is al-

ways set to x(0)
i = −2 for both (FUSS and MH). Furthermore, we 

apply directly the bivariate version of FUSS-MH-P2 with δ = 0.01, 
using the proposal constructed following the procedure described 
in Section 4.3. We use the initial support set SMi = {−104 :
0.1 : 104} for i ∈ {1, 2}, and different number of iterations K ∈
{30, 50, 100, 1000}. We compare with a standard bivariate MH al-
gorithm using again a random walk Gaussian proposal pdf, i.e., 
p̄(x(t)|x(t−1)) =N (x(t)|x(t−1), �p), with �p = [σ 2

p 0; 0 σ 2
p ]� and 

testing again several values of σp .
Tables 17 and 18 show the results in terms of relative error. 

Note that the FUSS schemes always outperform the MH methods, 
even with an optimal choice of the scale parameter σp . Further-
more, FUSS obtains better results using a smaller number of itera-
tions K , thus saving a good deal of valuable computational power. 
Moreover, the cost of drawing from the FUSS proposal pdf is small 
due to the application of the pruning procedure. Finally, note that 
the stand-alone version of FUSS provides better results than FUSS-
within-Gibbs (which in turn provides better results than MH and 
MH-within-Gibbs). This is due to the strong correlation among x1

and x2, which slows down the convergence of the Gibbs sam-
pler, and might be solved (at least partially) using an appropriate 
reparameterization or a better sweep strategy (e.g., a random scan 
approach) for the Gibbs sampler [2].

7.3. FUSS within Gibbs: parameter estimation in a chaotic system

The FUSS algorithms are also able to overcome severe compu-
tational issues in some statistical frameworks where other, even 
more sophisticated, MCMC techniques seem to fail [39,40]. In or-
der to show this capability, we address the estimation of fixed 
parameters of a chaotic system, which is considered a very chal-
lenging problem in the literature [39–41]. This type of systems are 
often utilized for modeling the evolution of population sizes, for 
instance in ecology [39]. Let us consider a logistic map [42] per-
turbed by multiplicative noise,

zt+1 = R
[

zt

(
1 − zt

�

)]
exp(εt), εt ∼ N (0, λ2), (20)

with z1 ∼ U([0, 1]) and for some unknown parameters R > 0 and 
� > 0. Let us assume that a sequence z1:T = [z1, . . . , zT ] is ob-
served and, for the sake of simplicity, let us consider that λ is 
known. Under these circumstances the likelihood function is given 
by

p(z1:T |R,�) =
T −1∏
t=1

p(zt+1|zt, R,�),

where, defining g(zt , R, �) = R 
[

zt
(
1 − zt

)]
, we have
�
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Table 19
MSEs in estimation of R and � using FUSS-MH-P2 and MH inside a Gibbs sampler, with δ = 10−3, K = 10 and NG = 50. 
The observed sequence z1:T is generated with R = 3.7, � = 0.4, T = 20 and different values of λ.

λ = 0.001 λ = 0.005 λ = 0.01 λ = 0.05 λ = 0.08 λ = 0.10

FUSS-MH-P2 MSE(R) 0.0071 0.0089 0.0093 0.0138 0.0150 0.0778
MSE(�) 5.01 ·10−5 6.15 ·10−5 6.15 ·10−5 5.26 ·10−5 7.33 ·10−5 1.78 ·10−4

MH (σp = 1) MSE(R) 0.6830 0.7264 0.7067 1.1631 1.3298 1.3293
MSE(�) 0.0373 0.0402 0.0423 0.0399 0.0471 0.0440

MH (σp = 2) MSE(R) 1.3566 1.4906 1.4247 2.0015 2.3042 2.2401
MSE(�) 0.0897 0.1117 0.1041 0.0989 0.1089 0.1125

Fig. 6. (a)–(b) Examples of (unnormalized) conditional log-pdfs with λ = 0.1 and considering T = 20 observations. (a) Fixing � = 4. (b) Fixing R = 0.7. (c) The (unnormalized) 
conditional pdf corresponding to Figure (b). Even advanced and adaptive MCMC techniques often fail in drawing samples from this kind of sharp densities.
p(zt+1|zt, R,�) ∝
∣∣∣∣ g(zt, R,�)

zt+1

∣∣∣∣exp

⎛⎜⎝−
log
(

zt+1
g(zt ,R,�)

)2

2λ2

⎞⎟⎠ ,

if g(zt , R, �) > 0, and p(zt+1|zt, R, �) = 0, if g(zt , R, �) ≤ 0. Con-
sidering uniform priors, R ∼ U([0, 104]) and � ∼ U([0, 104]), 
our goal is computing the mean of the bivariate posterior pdf, 
p(R, �|z1:T ) ∝ p(z1:T |R, �), which corresponds to the minimum 
mean squared error (MMSE) estimate of the parameters.

In the experiments, we set R = 3.7, � = 0.4 and T = 20. Fur-
thermore, we take into account different values of λ of the same 
order of magnitude as considered in [39]. Then we apply FUSS-
MH-P2, with δ = 10−3 and K = 10, within a Gibbs sampler using 
only NG = 50 iterations (SM = {10−4, 2 · 10−4, . . . , 20}).11 We also 
consider an MH-within-Gibbs approach with random walk pro-

posal, p̄(xt |xt−1) ∝ exp

(
−(xt−xt−1)2

2σ 2
p

)
, with two different values of 

σp ∈ {1, 2}. The initial states of the chains are chosen randomly 
from U([1, 5]) and U([0.38, 1.5]) in order to start sampling from 
the two full conditionals, p(R|�, z1:T ) and p(�|R, z1:T ) respec-
tively. In order to compare the performance of both approaches, 
we also perform an approximate computation of the true value of 
the mean (of the corresponding posterior pdf) via an expensive de-
terministic numerical integration procedure, and so we are able to 
calculate the MSE obtained by FUSS-MH-P2 and MH.

The results, averaged over 1000 independent runs, are shown 
in Table 19. It can be clearly seen that FUSS-MH-P2 achieves a 
very small MSE in the estimation of the two desired parameters 
(especially in the case of �) for any value of λ. Comparing with 
the MSE obtained by the MH algorithm, the benefit of building 
a proposal tailored to the full-conditionals (as done by FUSS) be-
comes apparent. Figs. 6(a)–(b) provide two examples of conditional 

11 Note that we use the simplest pruning procedure (P2) in order to show that, 
even in this case, FUSS provides a good performance.
log-pdfs, whereas Fig. 6(c) shows the “sharp” conditional density 
corresponding to Fig. 6(b). This pdf resembles a delta function: 
even using sophisticated adaptive techniques it is difficult to rec-
ognize the mode of this kind of target pdf.

7.4. FUSS within Gibbs: jump diffusion model for stock market index

We consider the inference problem in a model which is combi-
nation of the stochastic volatility model and infinite-activity Lévy 
jumps as in [43]. This model outperforms the popular Black–
Scholes model by [44] and Heston model by [45] in describing 
the dynamics of real-life stock prices. Specifically, suppose Yt is 
the daily log-return of some stock market index, i.e. Yt = log(St), 
where St is the daily index value, and let vt be the instantaneous 
variance of return, t ∈ N. We assume that the joint dynamics of 
the index return and variance can be described by the following 
stochastic equations,

Yt+1 − Yt =
(

r − 1

2
vt + φ J (−i) + ηs vt

)
� +

+√vt�εt+1,1 + Jt+1,

vt+1 − vt = k(θ − vt)� + σv

√
vt�εt+1,2, (21)

where r is the risk-free interest rate, ηs vt is the risk premium, 
and � is the time interval of the discretization on the daily basis 
(we set � = 1

252 ). In the variance process, k measures the speed of 
mean reverting, θ is the long-term mean of variance vt , and σv is 
the volatility of variance. εt,1 and εt,2 are two noise perturbations 
distributed according a bivariate Gaussian pdf, specifically,

(εt,1, εt,2) ∼ N ([0,0]�,�),

where � = [1, ρ; ρ, 1]� . We also consider a Lévy jump Jt in 
the process of Yt , and φ J (−i) is its jump compensator, defined as 
E Q [eiu Jt ] = e−tφ J (u) where Q is the so-called risk-neutral probabil-
ity measure. In our model setting, we employ the Variance Gamma 
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process proposed by [46] as Jt , and for simplicity we assume 
the jump-relevant parameters γ , ν , and σ remain unchanged un-
der Q , i.e.,

Jt = γ Gt(1, ν) + σ W Gt (1,ν),

φ J (−i) =
log(1 − γ ν − 1

2
νσ 2)

ν
, (22)

where Gt is an independent Gamma process that we consider 
known, and W Gt (1,ν) is a Brownian motion subordinated by Gt . In 
the market we observe the daily index return Yt , t = 1, . . . , T . To 
calibrate the model, we need to filter all the latent variables vt , Jt , 
and the fixed parameters � = {k, θ, ρ, σv , ηs, γ , ν, σ }. In particu-
lar, since all the latent variables are varied from day to day, for 
example v = [v1, . . . , v T ]� with T = 252 (in one year), the estima-
tion of this model is very challenging owing to the high dimension.

We apply a Gibbs sampler to draw from the complete poste-
rior distribution. The full-conditional pdfs of several latent vari-
ables and parameters have a standard form as Gaussian, inverse 
Gamma and Gamma densities so that direct sampling methods 
are available. However, the conditional pdfs corresponding to vt , 
t = 1, . . . , 252, and the parameter ν , have a complex analytic form, 
thus we apply FUSS-RC-P4 for drawing from them. We also apply 
a standard MH algorithm, with a Gaussian random walk proposal 

p̄(xt |xt−1) ∝ exp

(
− (xk−xk−1)2

2σ 2
p

)
, to compare the performance. We 

set x0 = 0.02 (regarding v) or x0 = 0.5 (regarding ν), K = 3 for 
both methods. We set σp = 0.01 for MH. We chose these values 
of x0 and σp after several attempts, in order to provide the best 
results of the MH method. Furthermore, for FUSS-RC-P4, we chose 
s1 = 0.0001, sM = 6, �si = si+1 − si = 0.0001, δ = 0.01. In this ex-
ample, we change the number of iterations of the Gibbs sampler, 
Ng = {10, 100, 500, 5 · 103}. For the MH method, we also consider 
Ng = 104.

We simulate artificial data by the system using as true parame-
ters k = 4, θ = 0.02, σv = 0.3, ρ = −0.8, ηs = 0.4, ν = 0.1, γ = 0.1, 
σ = 0.1, Y0 = 7, v0 = 0.02, and r = 0.02 (we recall that the jump 
component Gt is assumed known). Then we compute the MSEs in 
the estimation of ν and the entire vector v, i.e., the dimension of 
the problem is D = 253.

The results, averaged over 100 independent runs, are provided 
in Table 20. FUSS-RC-P4 always outperforms the standard MH 
method. We can also observe that FUSS-RC-P4 with only Ng = 10
provides a smaller MSE(v) than the MH method with Ng = 104.

Fig. 7, which compares the filtered paths by FUSS-RC-P4 
(dashed line) and MH (dotted–dashed line) with the simulated 
true path (solid line) of vt , demonstrates that MH can yield quite 
poor results if there is no much prior information on vt . In partic-
ular, given that it is a flat curve for initial variance with vt = 0.02
for all t = 1 . . . 252, MH did not achieve the true variance dynamics 
being sensitive to initial flat values whereas FUSS-RC-P4 captured 
the actual variance dynamics relatively well.

8. Conclusions and future lines

In this work, we have introduced FUSS (“Fast Universal Self-
tuned Sampler”), a novel and extremely efficient MCMC sampler 
for drawing from univariate densities. Although the proposal is 
tailored to the target by means of an initial automatic optimiza-
tion procedure, FUSS is not an adaptive MCMC algorithm, hence its 
ergodicity is not an issue. We have tested the new technique in 
several scenarios with different target distributions, including two 
very challenging practical applications: estimation of the param-
eters of a chaotic map and a financial signal processing problem. 
The performance achieved by the new methodology is close to that 
Table 20
MSEs obtained by FUSS-RC-P4 and MH methods for different number of iterations 
Ng of the Gibbs sampler.

Technique Ng MSE(v) MSE(ν)

FUSS-RC-P4 10 3.989 ·10−5 1.460 ·10−2

100 2.542 ·10−5 1.642 ·10−3

500 1.798 ·10−5 3.783 ·10−4

5000 1.138 ·10−5 9.119 ·10−5

MH 10 3.330 ·10−4 1.289 ·10−1

100 3.392 ·10−4 3.093 ·10−2

500 3.289 ·10−4 1.264 ·10−2

5000 2.754 ·10−4 7.514 ·10−3

105 7.660 ·10−5 1.368 ·10−3

Fig. 7. Filtering of variance path vt , t = 1, . . . , 252, by FUSS-RC-P4 and Ng = 5000
and MH with Ng = 105. The path is the average of the filtered paths in 100 different 
experiments.

of an exact sampler, yielding virtually i.i.d. samples. Consequently, 
the novel technique outperforms other well-known MCMC meth-
ods (such as the Metropolis–Hastings (MH) algorithm, the slice 
sampler, the Metropolis adjusted Langevin algorithm (MALA) or 
the Hamiltonian Monte Carlo (HMC) method), both in terms of 
accuracy and speed. Furthermore, the dependence on the initial 
parameters is also drastically reduced with respect to other MCMC 
techniques. Numerical simulations also show a clear benefit of us-
ing the FUSS schemes within a Gibbs sampler. Future lines include 
developing more efficient representations for the multi-variate ver-
sion of FUSS (e.g., using Chua’s canonical PWL model [47]), adapt-
ing it to sequential inference applications and addressing other 
problems in machine learning where MCMC-based inference is dif-
ficult to implement efficiently (e.g., inference in generalized Pois-
son mixed models [48] or Gaussian process latent variable mod-
els [49]).
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Appendix A. Construction of the tails for the proposal

The choice of the tails for the proposal is important for two rea-
sons: (a) to accelerate the convergence of the chain to the target 
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Fig. A.8. Example of the construction of heavy tailed proposal pdfs in the log-domain. (a) Example with a specific choice of the parameters μ0 > s2 and μm−1 < sm−1

(m = 10 in figure). (b)–(c) Alternative right log-tail constructions, decreasing the parameter μm−1. For μm−1 → −∞, the log-tail tends to become a straight line passing 
through (sm−1, V (sm−1)) and (sm, V (sm)). (d) Construction of the right log-tail with μm−1 ≈ sm−1. In this case, μm−1 → sm−1, i.e., it tends to become a constant line.
(especially for heavy-tailed target distributions) and (b) to increase 
the robustness of the method w.r.t. the initial choice of the set SM . 
Indeed, often the construction of tails with a bigger area below 
them can reduce the dependence on a specific choice of the set 
of initial support points. In general, a good choice is to build tails 
such that p(x) ≥ π(x) for x ∈ I0 and x ∈ Im . This is always pos-
sible when the target pdf has light tails (i.e., convex tails in the 
log-domain) and also for many heavy-tailed targets that appear in 
real-world applications. In the following, we show two practical 
approaches to build both light-tailed and heavy-tailed distribu-
tions.

A.1. Light tails

In order to use light tails, we can simply use two exponential 
pieces for the first and last intervals of the proposal:

p(x|Sm) = eh0x+b0 , ∀x ∈ I0,

p(x|Sm) = ehmx+bm , ∀x ∈ Im.

The first linear function, w0(x) = h0x + b0, is the straight line 
passing through the points (s1, V (s1)) and (s2, V (s2)), whereas 
the second linear function, wm(x) = hmx + bm , is the straight line 
passing through (sm−1, V (sm−1)) and the last point (sm, V (sm)). 
Note that we can compute the area below each piece analytically, 
A0 = 1

h0
exp(h0s1 +b0) and Am = − 1

hm
exp(hmsm +bm), and that we 

can also easily draw from each exponential tail using the inversion 
method [2].

A.2. Heavy tails

For heavy tailed constructions, there are also several possibil-
ities. For instance, here we propose to use Pareto pieces, which 
have the following analytic form
p(x|Sm) = eρ0
1

|x − μ0|γ0
, ∀x ∈ I0,

p(x|Sm) = eρm
1

|x − μm|γm
, ∀x ∈ Im,

with γ j > 1, j ∈ {0, m}. In the log-domain, this results in

w0(x) = ρ0 − γ0 log(|x − μ0|), for x ∈ I0,

wm(x) = ρm − γm log(|x − μm|), for x ∈ Im.

Fixing the parameters μ j , j ∈ {0, m}, the remaining parameters, 
ρ j and γ j , are set in order to satisfy the passing conditions 
through the points (s1, V (s1)) and (s2, V (s2)), and through the 
points (sm−1, V (sm−1)) and (sm, V (sm)), respectively. The parame-
ters μ j can be arbitrarily chosen by the user, as long as they fulfill 
the following inequalities:

μ0 > s2, μm < sm−1.

Values of μ j such that μ0 ≈ s2 and μm ≈ sm−1 yield small values 
of γ j (close to 1) and, as a consequence, fatter tails. Larger differ-
ences in |μ0 − s2| and |μm − sm−1| yield γ j → +∞, i.e., lighter 
tails. Several examples of this type of construction are illustrated 
in Fig. A.8. As in the previous case, we can compute analytically 
the integral of p(x|Sm) in I0 and Im:

A0 = eρm

γm − 1

1

(sm − μm)γm−1
,

Am = eρ0

γ0 − 1

1

(μ0 − s1)γ0−1
.

We can also draw samples easily from each Pareto tail using the 
inversion method [2].



L. Martino et al. / Digital Signal Processing 47 (2015) 68–83 83
References

[1] J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer, 2004.
[2] C.P. Robert, G. Casella, Monte Carlo Statistical Methods, Springer, 2004.
[3] L. Jing, P. Vadakkepat, Interacting MCMC particle filter for tracking maneuver-

ing target, Digit. Signal Process. 20 (2010) 561–574.
[4] W.J. Fitzgerald, Markov chain Monte Carlo methods with applications to signal 

processing, Signal Process. 81 (1) (2001) 3–18.
[5] M.F. Bugallo, S. Xu, P.M. Djurić, Performance comparison of EKF and parti-

cle filtering methods for maneuvering targets, Digit. Signal Process. 17 (2007) 
774–786.
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