Generalized Fourier Transform for signals in discrete time

Discrete Time Systems

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u>

Transformations for signal in discrete time

Standard Fourier Transform

DEFINITIONS: (x[n] NO-periodic)

Analysis Equation:

periodic with period 2π

Direct time ==> freq.

$$X(\Omega) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\Omega n}$$
 Fourier Transform

Syntesis Equation:

$$x[\mathbf{n}] = \frac{1}{2\pi} \int_{2\pi}^{\infty} X(\Omega) e^{j\Omega \mathbf{n}} d\Omega$$

Inverse Fourier Transform

Standard Fourier Transform

Important property:

$$X(\Omega) = X(\Omega + 2\pi)$$

periodic with period 2π

Existence (convergence of series of stand. FT)

$$lacksquare$$
 Ec. síntesis: $x[\mathbf{n}] = rac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega \mathbf{n}} d\Omega$

- ➤ Integramos sobre un intervalo finito → no hay problemas de convergencia
- Si los valores de la TF son finitos, la integral (el área) es finita
- $lacksquare {\sf Ec. \ an \'alisis:} \qquad X(\Omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\Omega n}$
 - Tenemos una suma infinita, esto es "peligroso" porque aunque los valores de la secuencia sean finitos, sumamos infinitos términos, con lo cual la suma sí puede dar infinito
 - Conclusión, no todas las señales discretas tienen TF
 - Para poder garantizar que la TF existe, necesitamos exigir a la señal unas condiciones análogas a las que pedíamos en CT, por ejemplo:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty \text{ -Energía finita}$$

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

Existence (convergence of series of stand. FT)

$$X(\Omega) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\Omega n}$$

with the calculus rules you know for Series.... we need:

Both are sufficient conditions!!

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty \text{ -Energía finita}$$
FINITE ENERGY

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

...the for the convergence of the analysis equation (direct Fourier transformation)

- Cesaro convergence, Cesaro summation
- Abel summation
- Borel summation
- Euler summation, Srinivasa Ramanujan formulas...

• In Srinivasa Ramanujan's "world":

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + 6 + \dots = -\frac{1}{12}$$

• but only in Ramanujan's "world" !!! ("Analytic continuation of the Zeta function")

In the following text, (\mathfrak{R}) indicates "Ramanujan summation". This formula originally appeared in one of Ramanujan's notebooks, without any notation to indicate that it exemplified a novel method of summation.

For example, the (\mathfrak{R}) of $1-1+1-\cdots$ is:

$$1-1+1-\cdots=\frac{1}{2}\ (\mathfrak{R}).$$

Ramanujan had calculated "sums" of bnown divergent series. It is important to mention that the Ramanujan sums are not the sums of the series in the usual sense, [2][3] i.e. the partial sums do not converge to this value, which is denoted by the symbol (\mathfrak{R}) . In particular, the (\mathfrak{R}) sum of $1+2+3+4+\cdots$ was calculated as:

$$1 + 2 + 3 + \dots = -\frac{1}{12} \quad (\mathfrak{R})$$

• a GOOD STUDENT MUST SAY:

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + 6 + \dots = \infty$$

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + 6 + \dots = -\frac{1}{12}$$

- very good, and proper/correct videos (from Mathologer):
- https://www.youtube.com/watch?
 v=YulljLr6vUA
- https://www.youtube.com/watch?
 v=jcKRGpMiVTw&t=1s

Generalized Fourier Transform

Discrete Time Systems

Generalized Fourier Transform (for some signals with infinite energy)

- We should use an extended theory for series...
 as we saw....
- The next formulas cannot be obtained with the calculus rules that you know so far (in this sense, they are *not true*, *and they cannot be proved* in "our world").

"Inverse" definition for GFTs

• "Inverse" definition: We could consider a *generalized* FT as a function in the transformed domain (Omega domain) such that *inverting it* with the inverse FT transformation (the synthesis equation) we get the signal x[n] we desire (in the time domain).

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X_{\mathbf{G}}(\Omega) e^{j\Omega n} d\Omega$$

• For instance:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} 2\pi \delta(\Omega - \Omega_0) e^{j\Omega n} d\Omega = e^{j\Omega_0 n} = x[n]$$

$$e^{j\Omega_0 n} \xrightarrow{\mathcal{GTF}} \begin{array}{c} X_{\pmb{G}}(\Omega) = \\ 2\pi \delta(\Omega - \Omega_0) \\ \text{periodic with period } 2\pi \end{array}$$

Recall that in discrete time, a complex exponential can be also non-periodic (with respect to the discrete time variable n)

It is periodic if
$$\Omega_0=2\pi\frac{m}{N}$$

• For instance:

$$e^{j\Omega_0 n} \xrightarrow{\mathcal{GTF}} 2\pi\delta(\Omega-\Omega_0)$$
 periodic with period 2π

 Note that alreadyis a "train" in delta (due to the 2\piperiodicity):

$$e^{j\Omega_0 n} \xrightarrow{\mathcal{GTF}} 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi m)$$

Discrete Time Systems

- Periodic signals have infinite energy
- For periodic signals, the Fourier Series is well-defined with our calculus rules.

$$x[n] \longleftrightarrow a_k$$

 a_k periodic with period N

$$a_k = a_{k+N}$$

 The direct transformation of standard does not exist (in our word - for a periodic signal)

We could use the "inverse" definition idea...

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X_{\mathbf{G}}(\Omega) e^{j\Omega n} d\Omega$$

GTF of a periodic signal of period N:

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta(\Omega - k\Omega_{0})$$

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\Omega - \frac{2\pi k}{N}\right)$$

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\Omega - \frac{2\pi k}{N}\right)$$

We will check that is periodic with period 2\pi

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta \left(\Omega - \frac{2\pi k}{N}\right)$$

$$a_{k+N}\delta\left(\Omega - \frac{2\pi(k+N)}{N}\right) = a_{k+N}\delta\left(\Omega - \frac{2\pi k}{N} - \frac{2\pi N}{N}\right)$$
$$= a_{k+N}\delta\left(\Omega - \frac{2\pi k}{N} - 2\pi\right)$$

Moreover, a_k periodic with period N since: $a_k = a_{k+N}$

Since: a_k periodic with period N $a_k = a_{k+N}$

$$a_k = a_{k+N}$$

$$a_{k+N}\delta\left(\Omega - \frac{2\pi(k+N)}{N}\right) = a_k\delta\left(\Omega - \frac{2\pi k}{N} - 2\pi\right)$$

So each 2\pi in Omega, we have deltas with the same "values"/"areas" (see next slide)

$$k + N \longrightarrow a_{k+N}\delta\left(\Omega - \frac{2\pi(k+N)}{N}\right) = a_k\delta\left(\Omega - \frac{2\pi k}{N} - 2\pi\right)$$

$$k \longrightarrow a_k\delta\left(\Omega - \frac{2\pi k}{N}\right)$$

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta \left(\Omega - \frac{2\pi k}{N}\right)$$

$$X_{\scriptscriptstyle G}\!(\Omega) = X_{\scriptscriptstyle G}\!(\Omega + 2\pi) = X_{\scriptscriptstyle G}\!(\Omega - 2\pi)$$

periodic with period 2π

$$X_{\mathcal{G}}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\Omega - k\Omega_0)$$

$$X_{C}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \frac{a_k}{\delta} \delta(\Omega - \frac{k\Omega_0}{N})$$
 $X_{C}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \frac{a_k}{\delta} \delta\left(\Omega - \frac{2\pi k}{N}\right)$

$$x[n] = 1$$

x[n] = 1 ==> It has infinite energy

It can be considered as a signal of periodic of period N=1; Indeed, it has a Fourier Series with coefficients:

$$a_k = 1$$
 for all k

note that
$$a_k = a_{k+N} = a_{k+1}$$

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} 1\delta(\Omega - 2\pi k)$$

$$X_{G}\!(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$$

Other Example

$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n-kN]$$
 ==> It has infinite energy

It can be considered as a signal of periodic of period N; with N=1 we come back to the previous example; It has a Fourier Series with coefficients:

$$a_k = \frac{1}{N}$$
 for all k note that $a_k = a_{k+N}$

$$X_G(\Omega) = \frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\Omega - \frac{2\pi}{N}k\right)$$

Example: again the complex exponential

$$x[n]=e^{j\Omega_0 n}$$
 Such that $\Omega_0=2\pi rac{m}{N}$ Considering $k=0,...,N-1$ $a_1=1$ $a_k=0$ for $k=0$ and $k=2,...,N-1$ $a_{N+1}=1$

$$e^{j\Omega_0 n} \xrightarrow{\mathcal{GTF}} 2\pi\delta(\Omega - \Omega_0)$$
 periodic with period 2π

Example: again the complex exponential

Considering
$$k=0,...,N-1$$
 Such that $\Omega_0=2\pi\frac{m}{N}$ $a_1=1$ $a_k=0$ for $k=0$ and $k=2,...,N-1$ $a_{N+1}=1$ $a_{N+1}=1$

If we replace this a_k's in the definition:

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta(\Omega - k\Omega_{0})$$

Example: again the complex exponential

If we replace this a_k's in the definition:

$$X_{G}(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta(\Omega - k\Omega_{0})$$

$$a_1 = 1$$
 $a_{k} = a_{k+N}$ $a_{N+1} = 1$ $a_{mN+1} = 1$ $a_{mN+1} = 1$

We can rewrite as:

$$e^{j\Omega_0 n} \xrightarrow{\mathcal{GTF}} 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi m)$$

Let see if the "inverse" definition works...

 Let prove that the GTF of a periodic signal is true by the the "inverse" definition:

$$x[\mathbf{n}] = \frac{1}{2\pi} \int_{2\pi} X_G(\Omega) e^{j\Omega \mathbf{n}} d\Omega$$

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} \left[2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\Omega - k\Omega_0 \right) \right] e^{j\Omega n} d\Omega$$

 Let prove that the GTF of a periodic signal is true by the the "inverse" definition:

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} \left[2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\Omega - k\Omega_0 \right) \right] e^{j\Omega n} d\Omega$$

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} \left[2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\Omega - \frac{2\pi k}{N} \right) \right] e^{j\Omega n} d\Omega$$

 Let prove that the GTF of a periodic signal is true by the the "inverse" definition:

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} \left[2\pi \sum_{k=0}^{N-1} a_k \delta \left(\Omega - k\Omega_0 \right) \right] e^{j\Omega n} d\Omega$$

$$x[n] = \sum_{k=0}^{N-1} a_k \int_0^{2\pi} \delta(\Omega - k\Omega_0) e^{j\Omega n} d\Omega$$

 Let prove that the GTF of a periodic signal is true by the the "inverse" definition:

$$x[n] = \sum_{k=0}^{N-1} a_k \int_0^{2\pi} \delta(\Omega - k\Omega_0) e^{j\Omega n} d\Omega$$

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk\Omega_0 n}$$

which is the FS of x[n], that is x[n] itself (we proved that).

Other Generalized Fourier Transforms (for signals with infinite energy)

Discrete Time Systems

GFT of non-periodic signals with infinite energy

- In different books/texts, we can find other GTFs.
- (1) For instance, a sum of periodic signals (that is not always periodic) has a GTF.
- (2) In discrete time, a complex exponential can be also non-periodic (with respect to the discrete time variable n) but always has a GTF.
- (3) Also cosine and sine are not always periodic in discrete time, and they can have GTF.

It is periodic
$$\Omega_0 = 2\pi \frac{m}{N}$$

$$x[n] = \cos(\Omega_0 n) \implies \cos(\Omega_0 n) = \frac{1}{2}e^{j\Omega_0 n} + \frac{1}{2}e^{-j\Omega_0 n}$$

$$x[n]=\cos(\Omega_0 n)$$
 It is periodic if $\Omega_0=2\pi\frac{m}{N}$ if it is periodic, we can write the FS:

$$\cos(\Omega_0 n) = \frac{1}{2} e^{j\Omega_0 n} + \frac{1}{2} e^{-j\Omega_0 n} \qquad a_1 = a_{-1} = \frac{1}{2}$$

Considering (N consecutive coefficients) from

$$k = -1, 0, 1..., N - 2$$

$$a_k = 0$$
, for all $k \neq -1$, 1 and

We could replace all those values in the GTF of periodic signals!

$$a_k = a_{k+N} \Rightarrow a_{mN+1} = a_{mN-1} = 1$$

$$x[n] = \cos(\Omega_0 n)$$

Then, in any case, periodic or non-periodic:

$$\cos\Omega_0 n \longrightarrow X_G(\Omega) = \pi \sum_{l=-\infty}^{\infty} \{\delta(\Omega - \Omega_0 - 2\pi l) + \delta(\Omega + \Omega_0 - 2\pi l)\}$$

Other Example

 $x[n] = \operatorname{sen}(\Omega_0 n) = \frac{e^{j\Omega_0 n}}{2 i} - \frac{e^{-j\Omega_0 n}}{2 i}$

$$e^{j\Omega_0 n} \xrightarrow{\mathcal{GTF}} 2\pi\delta(\Omega - \Omega_0)$$
 periodic with period 2π

$$X_G(\Omega) = \frac{\pi}{j} \sum_{k=-\infty}^{\infty} \left[\delta(\Omega - \Omega_o - 2k\pi) - \delta(\Omega + \Omega_o - 2k\pi) \right]$$

GFT of non-periodic signals with infinite energy

- In different books/texts, we could find other GTFs.
- (4) more generally, any signals with infinity energy where we can define GTF with the "inverse" definition, have a GTF.

Questions?