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ABSTRACT

Rejection sampling (RS) is a well-known method to draw from ar-
bitrary target probability distributions, which has important applica-
tions by itself or as a building block for more sophisticated Monte
Carlo techniques. The main limitation to the use of RS is the need
to find an adequate upper bound for the ratio of the target probability
density function (pdf) over the proposal pdf from which the samples
are generated. There are no general methods to analytically find this
bound, except in the particular case in which the target pdf is log-
concave. In this paper we adopt a Bayesian view of the problem and
propose a general RS scheme to draw from the posterior pdf of a
signal of interest using its prior density as a proposal function. The
method enables the analytical calculation of the bound and can be ap-
plied to a large class of target densities. We illustrate its use with a
simple numerical example.

Index Terms— Rejection sampling; Monte Carlo methods;
Monte Carlo integration; Overbounding; Sampling methods.

1. INTRODUCTION

Monte Carlo statistical methods are powerful tools for numerical in-
ference and optimization [5]. Currently, there exist several classes
of MC techniques, including the popular Markov Chain Monte Carlo
(MCMC) [2] and particle filtering [1] algorithms, which enjoy nume-
rous applications in signal processing.
Among these, rejection sampling (RS) [5, Chapter 2] is a classical
Monte Carlo method for “universal sampling”. It can be used to ge-
nerate samples from a target probability density function (pdf) by dra-
wing from a possibly simpler proposal density. The sample is either
accepted or rejected by an adequate test of the ratio of the two pdf’s,
and it can be proved that accepted samples are actually distributed ac-
cording to the target probability distribution. RS can be applied as a
tool by itself, in problems where the goal is to approximate integrals
with respect to (w.r.t.) the pdf of interest, but more often it is a useful
building block for more sophisticated Monte Carlo procedures [3, 4].
An important limitation of RS methods is the need to analytically
establish a bound for the ratio of the target and proposal densities.
There is a lack of general methods for bound computation, howe-
ver. One exception is the adaptive rejection sampling (ARS) method
[3, 5] which, given a target density, provides a procedure to obtain a
suitable proposal pdf (for which the bound is easy to compute). This
procedure is only valid when the target pdf is strictly log-concave,
which is not the case in most practical cases. In this paper we adopt
a Bayesian view of the problem and propose a general procedure to
apply RS when the target pdf is the posterior pdf of a signal of inter-
est (SI) given a collection of observations and the proposal density is
the prior of the SI. Unlike the ARS technique, our method can handle
target pdf’s with several modes (hence not log-concave). The number

of available observations can be arbitrary and each observation can be
related to the SI through a different nonlinearity. We assume that the
observations are contaminated with additive noise, but these random
variables need not be identically distributed.
The remaining of the paper is organized as follows. We formally
describe the signal model in Section 2. Some useful definitions and
basic assumptions are introduced in Section 3. In Section 4 we derive
the proposed method to find an upper bound of the target pdf in its
general form, while Section 5 is devoted to specific cases of practi-
cal interest. The proposed technique is exemplified in Section 6 and
Section 7 is devoted to the conclusions.

2. MODEL AND PROBLEM STATEMENT

Many signal processing problems involve the estimation of an unob-
served SI, x ∈ R

m (vectors are denoted as lower-case bold-face
letters all through the paper), from a sequence of related observa-
tions. We assume an arbitrary prior probability density function1

(pdf) for the SI, p(x), and consider n scalar observations, yi ∈ R,
i = 1, . . . , n, which are obtained through nonlinear transformations
of the signal x contaminated with additive noise. Formally, we write
y1 = g1(x) + ξ1, . . . , yn = gn(x) + ξn where y = [y1, . . . , yn]T ∈
R

n is the vector of available observations, gi : R
m → R, i =

1, . . . , n, are nonlinearities and ξi are independent noise variables,
possibly with different distributions for each i. We will assume noise
pdf’s of the form

p(ξi) = ki exp
{−αiV̄i(ξi)

}
, ki, αi > 0, (1)

where ki, αi are real constants and V̄ (ξi) is a function, subsequently
referred to as marginal potential, with the following properties: (I) it
is real and non negative, V̄i : R → [0, +∞); and (II) it is increasing

( dV̄i
dξi

> 0) for ξi > 0 and decreasing ( dV̄i
dξi

< 0) for ξi < 0.

These conditions imply that V̄i(ξi) has a unique minimum at ξ∗i =
0 and, as a consequence, p(ξi) has only one maximum (mode) at
ξ∗i = 0. Since the noise variables are independent, the joint pdf
p(ξ1, ξ2, . . . , ξn) =

∏n
i=1 p(ξn) is easy to construct and we can de-

fine a joint potential V (n) : R
n → [0, +∞) as

V (n)(ξ1, . . . , ξn) � − log [p(ξ1, . . . , ξn)] = −
n∑

i=1

log p(ξn). (2)

Substituting (1) into (2) yields

V (n)(ξ1, . . . , ξn) = cn +
n∑

i=1

αiV̄i(ξi) (3)

1We use p(·) to denote the probability density function (pdf) of a random
magnitude, i.e., p(x) denotes the pdf of x and p(y) is the pdf of y, possibly
different. The conditional pdf of x given y is written as p(x|y).
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where cn = −∑n
i=1 log ki is a constant. In subsequent sections we

will be interested in a particular class of joint potential functions de-

noted as V
(n)

l (ξ1, . . . , ξn) =
∑n

i=1 |ξi|l for 0 < l < +∞, where
the subscript l identifies the specific member of the class. In particu-

lar, the function obtained for l = 2, V
(n)
2 (ξ1, . . . , ξn) =

∑n
i=1 |ξi|2

will be termed Euclidean potential. Let g = [g1, . . . , gn]T be the

vector-valued nonlinearity defined as g(x) � [g1(x), . . . , gn(x)]T .
The scalar observations are conditionally independent given the SI x,
hence the likelihood function, �(x; y, g) � p(y|x), factorizes as

�(x; y, g) =
n∏

i=1

p(yi|x), (4)

where p(yi|x) = ki exp
{−αiV̄i(yi − gi(x))

}
. The likelihood in (4)

induces a system potential V (x; y, g) : R
m → [0, +∞),

V (x; y, g) � − ln[�(x; y, g)] = −
n∑

i=1

log[p(yi|x)], (5)

that is a function of x and depends on the observations y and the
function g. Using (3) and (5), we write the system potential in terms
of the joint potential,

V (x; y, g) = V (n)(y1 − g1(x), . . . , yn − gn(x)). (6)

Assume we wish to approximate, by sampling, some integral of the
form I(f) =

∫
R

f(x)p(x|y)dx, where f is some measurable function
of x and p(x|y) ∝ p(x)�(x; y, g) is the posterior pdf of the SI given
the observations. Unfortunately, it may not be possible in general to
draw directly from p(x|y) and we must apply simulation techniques
to generate adequate samples. One appealing possibility is to carry
out rejection sampling using the prior, p(x), as a proposal function. In
such case, let L be an upper bound for the likelihood, �(x; y, g) ≤ L,
and generate N samples according to the algorithm: 1.- Set i = 1.
2.- Draw x′ ∼ p(x) and u′ ∼ U(0, 1), where U(0, 1) is the uni-

form pdf in [0, 1]. 3.- If
p(x′|y)
Lp(x′) ∝ �(x′;y,g)

L
> u′ then xi = x′, else

discard x′ and go back to step 2. 4.- Set i = i + 1. If i > N
stop, else go back to step 2. Then, I(f) can be approximated as

I(f) ≈ Î(f) = 1
N

∑N
i=1 f(xi).

In the sequel, we address the problem of analytically calculating the
bound L. Note that, since the log function is monotonous, it is equi-
valent to maximize � w.r.t. x and to minimize the system potential V
also w.r.t. x. As a consequence, we may focus on the calculation of a
lower bound for V (x; y, g). Note that this problem is far from trivial.
Even for very simple marginal potentials, V̄i, i = 1, ..., n, the system
potential can be highly multimodal w.r.t. x. See the example in the
Section 6 for an illustration.

3. DEFINITIONS AND ASSUMPTIONS

Hereafter we restrict our attention to the case of a scalar SI, x ∈ R.
This is done for the sake of clarity, since dealing with the general
case x ∈ R

m requires additional definitions and notations. The te-
chniques to be described in Section 4 can be extended to the general
case, although this extension is not trivial. We define the set of state
predictions as X̃ �

{
x̃(i) ∈ R : yi = gi(x̃

(i)) for i = 1, . . . , n
}

.

Each equation yi = gi(x̃
(i)), in general, can yield zero, one or more

state predictions. We also introduce the maximum likelihood (ML)
state estimator x̂, as x̂ � arg max

x∈R

�(x|y, g) = arg min
x∈R

V (x; y, g),

not necessarily unique.

Let us use A ⊆ R to denote the support of the vector function g,
i.e., g : A ⊆ R → R

n. We assume that there exists a partition
{Bj}q

j=1 of A (i.e., A = ∪q
j=1Bj and Bi ∩ Bj = ∅, ∀i �= j)

such that we can define functions gi,j : Bj → R, j = 1, . . . , q

and i = 1, . . . , n, as gi,j(x) � gi(x), ∀x ∈ Bj , and: (a) every
function gi,j is invertible in Bj and (b) every function gi,j is eit-
her convex in Bj or concave in Bj . Assumptions (a) and (b) to-
gether mean that, for every i and all x ∈ Bj , the first derivative
dgi,j

dx
is either strictly positive or strictly negative and the second de-

rivative
d2gi,j

dx2 is either non-negative or non-positive. As a conse-
quence, there are exactly n state predictions in each subset of the
partition, x̃(i) = g−1

i,j (yi). We write the set of predictions in Bj

as X̃j = {x̃(1), . . . , x̃(n)}. If gi,j is bounded and yi is noisy, it
is conceivable that yi > max

x∈[Bj ]
gi,j(x) (or yi < min

x∈[Bj ]
gi,j(x)),

where [Bj ] denotes the closure of the set Bj , hence g−1
i,j (yi) may

not exist. In such case, we define x̃(i) = arg max
x∈[Bj ]

gi,j(x) (or

x̃(i) = arg min
x∈[Bj ]

gi,j(x), respectively), and admit x̃(i) = +∞ (res-

pectively, x̃(i) = −∞) as valid solutions.

4. GENERAL COMPUTATION OF BOUNDS

Our goal is to obtain an analytical method for the computation of a
scalar γ ∈ R such that γ ≤ inf

x∈R

V (x; y, g) for arbitrary (but fixed)

observations y and known nonlinearities g. The main difficulty to
carry out this calculation is the nonlinearity g, which renders the pro-
blem not directly tractable. To circumvent this obstacle, we split the
problem into q subproblems and address the computation of bounds
for each set Bj , j = 1, . . . , q, in the partition of A. Within Bj we
will build adequate linear functions {ri,j}n

i=1 in order to replace the
nonlinearities {gi,j}n

i=1. We require that, for every ri,j , the inequali-
ties

|yi − ri,j(x)| ≤ |yi − gi,j(x)| , and (7)

(yi − ri,j(x))(yi − gi,j(x)) ≥ 0 (8)

hold jointly for all i = 1, . . . , n, and all x ∈ Ij ⊂ Bj , where Ij

is any closed interval in Bj such that x̂j = arg min
x∈[Bj ]

V (x; y, g)

(i.e., the state estimator of x restricted to Bj , possible non unique) is
contained in Ij . The latter requirement can be fulfilled if we choose

Ij � [min(X̃j), max(X̃j)] (see the Appendix for a proof).
If (7) and (8) hold, we can write

V̄i(yi − ri,j(x)) ≤ V̄i(yi − gi,j(x)), ∀x ∈ Ij , (9)

which follows easily from the properties of the marginal potential
functions V̄i. Moreover, since V (x; y, gj) = cn +

∑n
i=1 αiV̄i(yi −

gi,j(x)) and V (x; y, rj) = cn +
∑n

i=1 αiV̄i(yi − ri,j(x)) where
gj = [g1,j , . . . , gn,j ] and rj = [r1,j , . . . , rn,j ], Eq. (9) implies that
V (x; y, rj) ≤ V (x; y, gj), ∀x ∈ Ij , and, as a consequence,

γj = inf
x∈Ij

V (x; y, rj) ≤ inf
x∈Ij

V (x; y, gj) = inf
x∈Bj

V (x; y, g). (10)

Therefore, it is possible to find a lower bound in Bj for the system
potential V (x; y, gj), denoted γj , by minimizing the modified poten-
tial V (x; y, rj) in Ij .
All that remains is to actually build {ri,j}n

i=1. This construction is
straightforward and can be described graphically by splitting the pro-
blem into two cases. Case I corresponds to nonlinearities gi,j such

that
dgi,j(x)

dx
× d2gi,j(x)

dx2 ≥ 0 (i.e., gi,j is either increasing and convex
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Fig. 1. Construction of the auxiliary linearities {ri,j}n
i=1. (a) Function gi,j is increasing and convex (case I). (b) Function gi,j is decreasing

and concave (case I). (c) Function gi,j is decreasing and convex (case II). (d) Function gi,j is increasing and concave (case II).

or decreasing and concave), for case II
dgi,j(x)

dx
× d2gi,j(x)

dx2 ≤ 0 (i.e.,
gi,j is either increasing and concave or decreasing and convex), when
x ∈ Bj .
Figure 1 (a)-(b) depicts the construction of ri,j in case I. We choose

a linear function ri,j that passes through min (X̃j) and the state pre-

diction x̃(i). It is apparent that dr < dg for x ∈ Ij , hence inequality
(7) is granted. Inequality (8) also holds for all x ∈ Ij , since ri,j(x)
and gi,j(x) are either simultaneously greater than, or simultaneously
lesser than, yi.
Figure 1 (c)-(d) depicts the construction of ri,j in case II. We

choose a linear function ri,j that passes through max (X̃j) and

the state prediction x̃(i). In the figure dr and dg denote the distances
|yi − ri,j(x)| and |yi − gi,j(x)|, respectively. It is apparent from the
two plots that inequalities (7) and (8) hold for all x ∈ Ij .

A special subcase of I (respectively, of II) occurs when x̃(i) =
min (X̃Bj ) (respectively, x̃(i) = max (X̃Bj )). Then, ri,j(x) is the

tangent to gi,j(x) in x̃(i). If x̃(i) = ±∞ then ri,j(x) is a horizontal
asymptote of gi,j(x).
It is often possible to find γj = inf

x∈Ij

V (x; y, rj) ≤ inf
x∈Ij

V (x; y, gj)

in closed-form. If we choose γ = min
j

γj , then γ ≤ inf
x∈R

V (x, y, g)

is a global lower bound of the system potential. Table 1 shows an
outline of the proposed method.

Table 1. Algorithm to find a lower bound.

1. Find a partition {Bj}q
j=1.

2. Compute the state prediction set X̃j for each Bj .

3. Calculate min(X̃j) and max(X̃j) and build ri,j(x) for x ∈ Ij

and i = 1, . . . , n.
4. Replace gj(x) with rj(x), and minimize V (x; y, rj) to find

the lower bound γj .
5. Find γ = min

j
γj .

5. SPECIAL CASES

5.1. Lower Bound γ2 for Euclidean potentials

Assume a Euclidean potential, V
(n)
2 (y1−g1,j(x), . . . , yn−gn,j(x)) =∑n

i=1(yi − gi,j(x))2 for each j = 1, . . . , q, and construct the set of
linearities ri,j(x) = ai,jx + bi,j , i = 1, . . . , n and j = 1, . . . , q.
The “linearized” system potential in Bj becomes V2(x; y, rj) =∑n

i=1(yi − ri,j(x))2 =
∑n

i=1(yi − ai,jx − bi,j)
2, and it turns out

straightforward to compute γ2,j = min
x∈Bj

V (x; y, rj). Indeed, if we

denote aj = [a1,j , . . . , an,j ]
T and wj = [y1−b1,j , . . . , yn−bn,j ]

T ,

then x̂L,j = arg minx∈Bj V (x; y, rj) =
aT
j wj

(aT
j aj)

, and γ2,j =

V (xL,j ; y, rj). Apparently γ2 = min
j

γ2,j ≤ V (x; y, g).

5.2. Adaptation of γ2 for generic system potentials

Consider an arbitrary joint potential V (n) and assume the availability

of an invertible function R such that R ◦ V (n) ≥ V
(n)
2 , where ◦

denotes the composition of functions. Then, for the system potential
we can write (R ◦ V )(x; y, g) ≥ ∑n

i=1(yi − gi(x))2 ≥ γ2, and, as
consequence, V (x; y, g) ≥ R−1 (γ2) = γ. As an example, consider

joint potentials V
(n)

p , where

(
n∑

i=1

|ξi|p
) 1

p

≥
(

n∑
i=1

ξ2
i

) 1
2

, for 0 ≤ p ≤ 2, and (11)

n

(
p−2
2p

) (
n∑

i=1

|ξi|p
) 1

p

≥
(

n∑
i=1

ξ2
i

) 1
2

, for 2 ≤ p ≤ +∞. (12)

Both inequalities can be proved from the monotonicity of Lp norms
[6]. We find invertible functions R(v) = v2/p, for Eq. (11), and

R(v) =

(
n

(
p−2
2p

)
v1/p

)2

= n

(
p−2

p

)
v2/p, for Eq. (12), that can be

applied to yield γ = γ
p/2
2 ≤ ∑n

i=1 |yi − gi(x)|p, for 0 < p ≤ 2,

and γ =
γ

p/2
2

n(p−2)/2p ≤
∑n

i=1 |yi − gi(x)|p, for 2 ≤ p < +∞.

5.3. Convex marginal potentials V̄i

Assume that A = {Bj}q
j=1 and we have already found ri,j(x) =

ai,jx+bi, i = 1, . . . , n and j = 1, . . . , q, using the technique in Sec-
tion 4. If all marginal potentials V̄i(ξi) are convex, then the “linea-
rized” system potential in Bj , V (x; y, rj) = cn +

∑n
i=1 αiV̄i(yi −

ri,j(x)), is also convex and we can use the tangents to V (x; y, rj) at

the limit points of Ij (i.e, min(X̃j) and max(X̃j)) to find a bound.
This is depicted in Fig. 2 (a), where it is seen that the intersection of
the two tangents yields a lower bound in Bj .

6. EXAMPLE

Given x ∈ R with prior density p(x) ∼ N(x; 0, 2) and the system
with y ∈ R

n=2

y1 = exp (x) + ξ1, y2 = exp (−x) + ξ2, (13)

where ξ1 is Gaussian noise N(ξ1; 0, 1/2) = k1 exp
{−(ξ1)

2
}

, and

ξ2 has a gamma pdf, Γ(ξ2; θ, λ) = k2ξ
θ−1
2 exp {−λξ2}, with pa-

rameters θ = 2, λ = 1, the corresponding marginal potentials are
V1(ξ1) = ξ2

1 and V̄2(ξ2) = − log(ξ2) + ξ2. Since the minimum of
V̄2(ξ2) occurs in ξ2 = 1, we replace y2 with the shifted observation
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Fig. 2. (a) The intersection of the tangents to V (x; y, rj) at min(X̃j) and max(X̃j) is a lower bound for V (x; y, gj). (b) The system

potential V (x, y, g) (solid), the modified system potential V (x, y, r) (dashed), function (R−1 ◦ V )(x, y, r) (dot-dashed) and two tangents
lines (dotted)). (c) The target density p(x|y) (solid), and the prior p(x) (dashed). (d) The histogram of N = 10000 samples using RS.

y∗
2 = exp (−x) + ξ∗2 , where y∗

2 = y2 − 1, ξ∗2 = ξ2 − 1. The mar-
ginal potential becomes V̄2(ξ

∗
2) = − log(ξ∗2 + 1) + ξ∗2 + 1 with a

minimum at ξ∗2 = 0. The observation vector is y = [y1, y
∗
2 ]T and

the vector of nonlinearities is g = [exp (x), exp (−x)]T . Due to the
monotonicity and convexity of of g1 and g2, we can work with a par-
tition of R consisting of just one set, B1 ≡ R. The joint potential is
V (2)(ξ1, ξ

∗
2) = ξ2

1 − ln(ξ∗2 + 1) + ξ∗2 + 1 and the system potential

V (x; y, g) = (y1 − exp (x))2 − log(y∗
2 − exp (−x) + 1)

+(y∗
2 − exp (−x)) + 1. (14)

If, e.g., y = [2, 5], the state predictions are x̃(1) = log(2) and

x̃(2) = − log(5), therefore IB1 = [− log(5), log(2)]. Using the
technique in Section 4, we find r1(x) = −1.95x+1.85 and r2(x) =
0.78x + 1.45. In this case, we can analytically minimize the mo-
dified system potential, V (x; y; r), finding arg min

x∈IB1

(V (x, y, r)) =

−0.4171. The associated lower bound is γ = min
x∈IB1

(V (x, y, r)) =

2.89 (the true global minimum of the system potential is 3.78). Since
the marginal potentials are both convex, we could have used the pro-
cedure described in Section 5.3, obtaining as lower bound the value
γ = 1.61. We also could have used the technique in Section 5.2 with
R−1(v) = − log(

√
v + 1) +

√
v + 1. Solving the problem for an

Euclidean potential, we find γ2 = 2.79. Therefore, in this case our
lower bound is γ = R−1(γ2) = 1.68.
Now we use the prior pdf p(x) = N(x; 0, 2) and the upper bound
L = exp{−2.89} to implement a rejection sampler that draws from
p(x|y). Figure 2 (b) depicts the system potential V (x; y, g) (solid
line), the modified system potential V (x; y, r) (dashed line), the fun-
ction (R−1 ◦ V )(x; y, r) (dotted-dashed line) and the two tangents
lines (dotted lines) for our example. Figure 2 (c) shows the target
function p(x|y) and the proposal p(x). Finally, Figure 2 (d) depicts
the histogram of N = 10, 000 samples generated by the RS algo-
rithm. The histogram follows closely the shape of the true posterior
pdf. The acceptance rate for the sampler is ≈ 20%.

7. CONCLUSIONS

We have proposed a rejection sampling method to draw from the pos-
terior pdf, p(x|y), of a signal of interest x given a collection of non-
linear observations y in additive noise. The new technique uses the
prior, p(x), as a proposal density and yields the required bound of
p(y|x) analytically. Our method can be used in different Monte Carlo
schemes, including accept-reject particle filters [4] and MCMC met-
hods [5]. It also yields a natural generalization of the adaptive rejec-
tion sampling scheme of [3] that can be applied without requiring the

target pdf to be log-concave.

Appendix
Proposition: The state estimator x̂j belongs to interval Ij , i.e., x̂j ∈
Ij � [min (X̃j), max (X̃j)], where Ij ⊆ Bj .

Proof: We have to prove that dV/dx < 0, for all x < min (X̃j), and

dV/dx > 0, for all x > max (X̃j), so that all stationary points of V

stay inside Ij = [min (X̃j), max (X̃j)]. Routine calculations yield
the derivative dV/dx = −∑n

i=1 αidgi/dx
[
dV̄i/dξi

]
ξi=yi−gi(x)

and we aim to evaluate it outside the interval Ij . To do it, let us denote

x̃min = min(X̃j) and x̃max = max(X̃j) and consider the cases
dgi/dx > 0 and dgi/dx < 0 separately (the sign of dgi/dx does not
change in Bj). In the first case we can readily find that dgi/dx > 0,

x̃(i) ≥ x̃min together imply that yi = gi(x̃
(i)) ≥ gi(x̃min) > gi(x)

∀x < x̃min. Therefore to the assumed properties of potential fun-
ctions,

[
dV̄i/dξi

]
ξi=yi−gi(x)>0

> 0. As a consequence, dV
dx

< 0

∀x < x̃min. When dgi/dx < 0 and x̃(i) ≥ x̃min we obtain

that yi = gi(x̃
(i)) ≤ gi(x̃min) < gi(x), ∀x < x̃min. Then

yi − gi(x) < 0 for all x < x̃min and
[
dV̄i/dξi

]
ξi=yi−gi(x)<0

< 0.

As a consequence, dV
dx

< 0 ∀x < x̃min.

A similar argument for x > x̃max yields dV
dx

> 0 for all x > x̃max

and completes the proof. �
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