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ABSTRACT 

In many practical scenarios, including those dealing with 

large data sets, calculating global estimators of unknown 

variables of interest becomes unfeasible. A common solution 

is obtaining partial estimators and combining them to approx­

imate the global one. In this paper, we focus on minimum 

mean squared error (MMSE) estimators, introducing two ef­

ficient linear schemes for the fusion of partial estimators. The 

proposed approaches are valid for any type of partial estima­

tors, although in the simulated scenarios we concentrate on 

the combination of Monte Carlo estimators due to the nature 

of the problem addressed. Numerical results show the good 

performance of the novel fusion methods with only a fraction 

of the cost of the asymptotically optimal solution. 

Index Terms- Global estimator; partial estimator; linear 

combination; fusion; Monte Carlo estimation. 

1. INTRODUCTION 

Estimation theory addresses the problem of inferring a set of 

unknown variables of interest given a collection of observable 

data [1, 2, 3]. Unfortunately, determining the global estimator 
of these parameters using all the available infonnation is often 

unfeasible or impractical for many real-world scenarios. For 

example, in big data applications the amount of data at hand 

imposes computational and/or storage constraints that impede 

the global estimation process [4]. Also, large data sets pose 

a challenge for Monte Carlo estimators, since the posterior 

density tends to concentrate on a relatively small space as the 

number of data increases [5]. 
A possible alternative to global estimation reduces to di­

viding the available data into groups of manageable informa­

tion and obtaining partial estimators of the unknowns. The 

objective is then to properly combine the partial estimators 

to achieve the performance of the global one. Fusion of es­

timates has been widely studied in many different areas. On 
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the one hand, in wireless sensor networks the focus has been 

on distributed learning/estimation under communication con­

straints [6, 7] and the adaptation of methods developed for 

graphical models to distributed fusion [8]. Many different 

consensus, gossip or diffusion algorithms [9, 10, 11] have 

been developed, but they require a significant amount of com­

munication that may constitute a burden in big data appli­

cations. On the other hand, a related field in the statistical 

literature is the combination of forecasts [12]. Indeed, the 

optimal linear combination for the single parameter case was 

already derived in [13, 14] and a Bayesian perspective was 

provided in [15]. However, there are two important differ­

ences with respect to the scenario addressed here: (1) each 

forecaster is assumed to have access to the whole data set; (2) 

computational complexity is not considered an issue in those 

cases. Finally, there is currently a great interest in parallel 

Bayesian computation using Monte Carlo methods [16], and a 

few communication-free parallel Markov chain Monte Carlo 

(MCMC) algorithms have been developed [17,18,19]. How­

ever, none of them addresses the potentially large dimension 

of the optimal combiners. 

The main contribution of this work is the derivation of 

two novel efficient linear schemes for the fusion of partial 
MMSE estimators, which are independent from the methods 

used to obtain the partial estimates. The motivation comes 

from the asymptotically optimal linear combination, which 

involves the calculation of one weighting matrix per partial 

estimator and thus may be inaccurate and computationally de­

manding for large dimensional systems (both in number of 

unknowns and observations).l In order to reduce the compu­

tational complexity, we propose two linear approaches that re­

quire only a single weighting coefficient per partial estimator 

and one weighting coefficient per parameter and partial esti­

mator respectively. We apply the proposed algorithms to the 

problem of target localization using measurements acquired 

by more than one sensor. Monte Carlo partial estimators are 

used to deal with the groups of measurements. 

1 Note that the optimal linear combination requires as many weighting ma­

trices (whose size depends on the number of unknowns) as partial estimators 

(whose number is related to the number of observations). 
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2. PROBLEM STATEMENT: 

GLOBAL VS. PARTIAL ESTIMATORS 

In many applications, we are interested in inferring a vari­

able of interest given a set of observations or measurements. 

Let us consider the variable of interest, x E X � jRDX1, 
and let y E Y � jRNX1 be the observed data. The poste­

rior probability density function (PDF) (i.e., the conditional 

PDF of the variables of interest given the data) is p(xly) = 

zty) 7r(x, y) ex: 7r(x, y), where Z( y) is the model evidence 

(a.k.a. partition function) and 7r(x, y) is the joint PDF of x 
and y. A common approach for the estimation of x given 

y is trying to find an estimator, x = f( y), that minimizes 

the mean squared error (MSE). Mathematically, the minimum 

mean squared error (MMSE) estimator of x is obtained as 

where 

X(MMSE) 
= arg min MSE(xly), 

x 

MSE(xly) =lE((x-x)T(x-x)) 

= j� (x -x)T (x -x)p(xly)dx. 

(1) 

(2) 

Note that solving (1) is equivalent to minimizing the Bayesian 

risk under a quadratic loss function. It is well-known that the 

MMSE estimator is given by the conditional mean [1, 2, 3]: 

X(MMSE) 
= lE(xly) = j� x p(xly)dx. (3) 

Unfortunately, obtaining this global estimator is often un­

feasible or impractical. A possible solution then consists of 

splitting the data into L groups/clusters, so that the £-th cluster 

(1 � £ � L) only has access to Ne samples. In this situation 

we can obtain the partial MMSE estimator for each cluster 

(i.e., the MMSE estimator of x given all the data available to 

the £-th estimator, Ye) as 

where 

x�MMSE) 
= arg min MSE(xeIYe), 

Xi 
(4) 

MSE(xelye) = Ix (xe -x) T (xe -x)pe(xlye)dx, (5) 

and pe( xly e) denotes the partial posterior induced by the £-th 

subset of data, Yeo Like the global MMSE estimator given 

by (3), the partial MMSE estimator corresponds to the condi­

tional mean given the £-th subset of data: 

,(MMSE) 1 Xe = lE(xlye) = x x pe(xlye)dx. (6) 

The objective is obtaining the global MMSE estimator from 

the set of partial MMSE estimators. 
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3. ASYMP TOTICALLY OP TIMAL COMBINATION 

OF PARTIAL ESTIMATORS 

In general, the MMSE estimator is a non-linear function of 

the whole data set and the exact global MMSE estimator can­

not be attained by any combination of partial MMSE estima­

tors.2 However, the Bernstein-von Mises (a.k.a. Bayesian 

central limit) theorem states that, under suitable regularity 

conditions, the partial posterior PDFs, Pe(xIYe), converge to 

Gaussian PDFs as Ne tends to infinity [20, 21], i.e., 

pe(xlye) --+ N(xIJL�e), e�C)) as Nc --+ 00, (7) 

with N(xIJL�e), e�e )) indicating that x has a Gaussian PDF 
. 

h 
(e) ,(MMSE) d 

. . 
wit a mean vector JLx = Xc an a covanance matnx 

e�e) = lE ((X�MMSE) _ X)(X�MMSE) _ x) T ) 
_ j' (,(MMSE) )(,(MMSE) )T (I )d - xe -x xe -x P c X Yc X. x (8) 

Assuming that we have independent (though not necessarily 

identically distributed) observations and that each of them can 

only belong to one cluster (i.e., we have disjoint sets of sam­

ples such that N = 'Lf=l Nc), the global posterior PDF also 

converges to a Gaussian PDF as N tends to infinity, i.e., 

L 
p(xly) = II pe(xlye) = N(xlJLx, ex) as N --+ 00, 

e=1 
(9) 

with 

(lOa) 

L 
_ e " (e(e ) ) -1 

A (MMSE) JLx - x � x Xc . (lOb) 
e=l 

This result has been recently exploited in [18] to obtain 

asymptotically exact samples from the global posterior using 

a parallel MCMC algorithm. 

4. EFFICIENT LINEAR COMBINATION OF 

PARTIAL ESTIMATORS 

4. 1. Asymptotically Optimal Combination 

Let us consider a linear fusion approach, where the global 

estimator is obtained as a weighted linear combination of the 

partial MMSE estimators: 

L 
A (LMSE) _ " A ,(MMSE) x - � eXe ' (11) 

1'=1 
2 An exception occurs when the global MMSE estimator is "separable in 

the data". For instance, this happens when the global posterior PDF is Gaus­

sian with a mean that is a weighted linear combination of the data. In this 

case, a properly weighted linear combination of the partial MMSE estima­

tors leads to the exact global MMSE estimator. 



where AR is a D x D matrix of weights. Noting that the MSE 
in (2) can be alternatively expressed as 

MSE(xly) = Tr (lE ((x -x)(x -x) T)) , (12) 

it is straightforward to show that the MSE of (11) is given by 

L 
MSE(x (LMSE) Iy) = L Tr (ARC�R) AI ), 

R=l 
(13) 

where Tr( A) denotes the trace of matrix A and C�R) is given 
by (8). Given the L partial MMSE estimators, the best linear 
unbiased global estimator is obtained solving the following 
constrained optimization problem: 

L 
A* =argminLTr (ARC�R)AJ ), (14a) 

A R=l 
L 

s.t. LAR =1, (14b) 
R=l 

where A = [AI, ... , ALl, (14a) corresponds to a standard 
MSE minimization problem and (14b) is required to guaran­
tee that the resulting global estimator is unbiased. Applying 
the method of Lagrange multipliers [22], we obtain the solu­
tion for each of the weight matrices as3 

(15) 
Substituting (15) into (11), we note that the LMSE estima­
tor is given exactly by (10b), i.e., X (LMSE) = /-Lx' Thus, the 
LMSE estimator is asymptotically optimal as N -7 00. 

4. 2. Restricted Linear Combination 

Unfortunately, the LMSE estimator described in the previous 
section requires obtaining a D x D weighting matrix for each 
of the L partial estimators. In practice, this implies estimating 
D2 L parameters overall. When D is large this can be prob­
lematic in terms of statistical accuracy (especially when N is 
not so large compared to D2 L) and results in high computa­
tional and storage costs. 

In order to reduce the number of parameters to be esti­
mated, here we consider a restricted LMSE estimator, where 
a single coefficient per partial estimator is used to construct 
the global estimator. This single coefficient MSE (SCMSE) 
estimator is given by4 

L 
, (SCMSE) " , (MMSE) x = �aR xR , 

R=l 
(16) 

3 See our technical report for a detailed derivation of the coefficients in 

Sections 4.1 and 4.2 [23]. 
4Note that the SCMSE estimator can be obtained by setting At = atl in 

(11), with I denoting a D x D identity matrix. 

where the coefficients aR are obtained solving the following 
constrained optimization problem: 

L 
a* = arg min L a;Tr ( C�R) ), 

Q R=l 

s.t. 

(17a) 

(17b) 

with a = [aI, ... , aLl. Using again the method of Lagrange 
multipliers, the closed-form solution for the £-th weight (1 :s; 
£ :s; L) is given by 

[Tr(C�R)) r1 
aR = ----=-----"------,-

L�=l [Tr(C�k)) ] -
l 

[MSE(x�MMSE)lyR) ] -1 
(18) 

where the last expression in (18) comes directly from (12). 
The SCMSE estimator has a substantially reduced com­

putational cost w.r.t. the LMSE estimator, since it only re­
quires the estimation of L parameters overall, instead of the 
D2 L parameters of the LMSE estimator. However, noting 
that the optimal weights in (18) involve the trace of the partial 
covariance matrices, we also introduce an independent lin­
ear minimum mean squared estimator (ILMSE), where AR = 
diag( aR,l, ... , aR,D)' This approach leads to an independent 
estimation of each of the D variables of interest: 

L 
A (ILMSE) " A (MMSE) Xd = � aR,d XR,d ' 

R=l 
(19) 

, (MMSE) where 1 :s; d :s; D and xR d denotes the d-th component 
of the £-th partial MMSE �stimator. In practice, the weights 
in (19) can be obtained by solving D single parameter con­
strained optimization problems: 

L 
ad = arg min L a;,dC�? ' (20a) 

Qd R=l 
L 

s.t. LaR,d = 1 ,  (20b) 

where ad = [a1,d, ... , aL,dlT and C�? is the d-th element 
along the main diagonal of C;Z). The solution is now 

[MSE(:i;� �MSE) IYR) ] -
l 

aR,d = -----=.----------''---'1 . 
L�=l [MSE(:i; k�tSE)IYk) r 

(21) 

This approach requires the estimation of DL parameters over­
all, and thus it can be seen as an intermediate approach be­
tween the LMSE and the SCMSE. 
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Experiment Ne 
Scenario Estimator 6 12 30 60 240 600 1200 3000 6000 

EWF 0.0041 0.0049 0.0065 0.0090 0.0167 0.0590 0.1192 0.2899 

ScI 
SCMSE 0.0039 0.0046 0.0063 0.0089 0.0166 0.0587 0.1191 0.2899 

0.5540 
ll.,MSE 0.0038 0.0046 0.0063 0.0089 0.0166 0.0586 0.1188 0.2886 

LMSE 0.0037 0.0045 0.0062 0.0088 0.0165 0.0584 0.1183 0.2878 

EWF 0.0087 0.0053 0.0064 0.0104 0.0343 0.0648 0.1681 0.3392 

Sc2 
SCMSE 0.0057 0.0034 0.0047 0.0092 0.0328 0.0628 0.1623 0.3290 

0.5540 
ll.,MSE 0.0052 0.0031 0.0043 0.0085 0.0304 0.0588 0.1521 0.3159 

LMSE 0.0037 0.0021 0.0028 0.0057 0.0210 0.0410 0.1107 0.2406 

EWF 0.0078 0.0061 0.0068 0.0092 0.0169 0.0587 0.1181 0.2877 

Sc3 
SCMSE 0.0060 0.0053 0.0066 0.0091 0.0168 0.0584 0.1180 0.2877 

0.5540 
ll.,MSE 0.0055 0.0051 0.0065 0.0090 0.0168 0.0583 0.1177 0.2867 

LMSE 0.0051 0.0048 0.0064 0.0090 0.0167 0.0582 0.1174 0.2861 

Table 1. MSE (averaged over 50 independent runs) for the three scenarios and the four fusion methods considered. 

5. NUMERICAL EXPERIMENTS 

We address the problem of positioning a target in the two­

dimensional space of a wireless sensor network with only 

range measurements [24]. More specifically, we consider a 

random vector X = [Xl, X2 ]T to denote the target's posi­

tion in the ]R2 plane. The position of the target is then a 

specific realization x. The measurements are obtained from 

6 range sensors located at hI = [1 , _8]T, h2 = [8, 10]T, 
h3 = [-15, _7]T, h4 = [-8, I]T, h5 = [10, 0]T and h6 = 

[0, lO]T. The measurement equations are given by 

Yj = -20 log (11x - hj11
2
) + ej, j = 1 ,  ... , 6, (22) 

where ej rv N( Bj 10, wJI), with Wj = 5 for j E {I, 2, 3} 
and Wj = 20 for j E {4, 5, 6}. We simulate N = 6000 
observations from the model (lif = 1000 observations from 

each sensor), setting Xl = X2 = 3.5. We consider a varying 

number of partial estimators L, with Ne = N / L observations 

per estimator for 1 ::; g ::; L, and three scenarios for splitting 

the data: 

ScI Exactly if measurements from each sensor are pro­

vided to each partial estimator. 

Sc2 The first L /2 estimators contain an equal number of 

observations from the first 3 sensors (the best ones), 

whereas the remaining L /2 estimators work with mea­

surements from the last 3 sensors (the noisiest ones). 

Sc3 Measurements are randomly assigned to the estimators. 

For each scenario, we run 1V1;;) = 100 MCMC independent 

parallel chains with length Tg) = 5000, compute the MMSE 

estimates xie) and x�e), and fuse these estimates into the final 

result. We compare the Equal Weights Fusion (EWF) method, 

where each estimator is given the same weight, 1/  L, and the 

three fusion methods described in Section 4. The results, 

shown in Table 1 and Fig. 1, confirm the good performance 

of the SCME and ILMSE estimators, which outperform the 

naive EWF and show an MSE similar to the optimal and more 

costly LMSE. Note that the poor performance of all the esti­

mators for small values of L is due to the slower convergence 

of the parallel chains when the number of data in the posterior 

is large (e.g., for Tg) = 20000 the MSE decreases to 0.1624 
when L = 1 ). This shows the importance of splitting the data 

even when a single estimator is able to deal with them. 

1 0 -3.L-_---:=-=--= __ ----,-:--=-_---=-=--=-__ -=-=-=--_� o 200 400 600 800 1000 
Number of filters 

Fig. 1. MSE as a function of L for scenario 2 (Sc2). 

6. CONCLUSIONS AND FUTURE LINES 

In this paper we have addressed the fusion of partial minimum 

mean squared error (MMSE) estimators using two novel effi­

cient linear combination schemes. The methods were tested 

through computer simulations by applying them to a localiza­

tion problem with one target and six sensors whose measure­

ments were processed using several parallel filters. The new 

fusion methods show a similar performance to the optimal 

linear combination with a reduced computational cost. 
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