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Many practical simulation tasks demand procedures to draw samples
efficiently from multivariate truncated Gaussian distributions.
Introduced is a novel rejection approach, based on the Box-Muller
transformation, to generate samples from a truncated bivariate
Gaussian density with an arbitrary support. Furthermore, for an
important class of support regions the new method allows exact
sampling to be achieved, thus becoming the most efficient approach
possible.

Introduction: The numerical simulation of many systems of practical
interest demands the ability to produce Monte Carlo samples from trun-
cated Gaussian distributions [1-3]. The simplest way to address this
problem is to perform rejection sampling using the corresponding
(non-truncated) Gaussian distribution as a proposal. This trivial
method produces independent and identically distributed (I.1.D.)
samples, but it is time consuming and computationally inefficient. For
these two reasons, different methods have been introduced in the
literature, e.g. using Markov chain Monte Carlo (MCMC) techniques
[1, 3] or rejection sampling [4]. Unfortunately, MCMC schemes
produce correlated samples, which can lead to a very slow convergence
of the chain, whereas rejection methods can be computationally
inefficient.

In this Letter, we introduce a novel approach, based on the
Box-Muller transformation (BMT) [5], to generate L.I.D. samples from
truncated bivariate Gaussian distributions. The main advantages of the
proposed approach are the following: 1. it allows sampling within a
generic domain D C R? without any restriction and 2. the inverse
transformation of the BMT maps any region D C R? (either bounded
or unbounded) into a bounded region, A C R =10, 1] x [0, 1].
Hence, all the procedures developed for drawing efficiently uniform
random variables within bounded regions, e.g. adaptive rejection
sampling or strip methods [5, 6], can always be used. Furthermore, for
an important class of support regions the BMT allows us to perform
exact sampling (i.e. draw LL.D. samples from the target distribution
without any rejection), which is the most efficient situation possible.

Problem formulation: The problem considered here is related to
drawing samples from a truncated multivariate Gaussian distribution.
In particular, in this Letter we focus on drawing samples from a bivariate
truncated standard Gaussian PDF, denoted as Z ~ TN (0, I, D), where
the support domain D C R? is a non-null Borel set. Note that drawing
samples from a non-truncated standard Gaussian distribution,
Z ~ N(0, I), enables us to draw samples from an arbitrary Gaussian dis-
tribution, X ~ N(u, %), whenever X is positive definite. More precisely,
since 3 is positive definite, it can be expressed as 3 = SS', using for
instance the Cholesky decomposition, and the random vector
X =SZ + p has the desired distribution, X ~ N(u,X). Similarly,
sampling from a truncated bivariate standard Gaussian distribution
allows us to generate samples from an arbitrary truncated bivariate
Gaussian. In this case, if Z ~ TN(0,1, D), then we can obtain
X ~ TN(p, 3, D*) simply through the transformation X = SZ + p,
with 3 = SST and
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Box-Muller transformation (BMT): The BMT maps a uniform random
variable (RV) taking values within the rectangle R = [0, 1] x [0, 1]
into a standard Gaussian vector taking values on R?. Given two inde-
pendent uniform random variables inside the interval [0,1],
Uy, Uy ~ U([0, 1]), the Box-Muller transformation is given by [5]:

Z1 & My(Up, U)) = /=2 In(U,) sin(2wUs) 2)
22 4 Mz(Uz, Ul) = -2 ln(Ul)COS(Z’ﬂUQ) (3)

The BMT transforms the RV U = (U,, U;) into another RV,
7 = (Z,, 7)), following a bivariate standard Gaussian distribution, i.e.
Z ~ N(0,I). In the sequel, we indicate the BMT, given by (2) and
3),asM: R — R? with M(U,, Uy) = (Z,, Z)). Hence, if we are able
to draw uniformly a point (u5, u}) in R, we can generate a transformed

point (z3, z) = M(u}, 1) which is a sample from a standard bivariate
Gaussian distribution.

Sampling bivariate truncated Gaussians via BMT: The BMT is a con-
tinuous transformation that establishes a one-to-one correspondence
between the points in R and the points in R?, except for the point
(Zy =0,Z, = 0). This point is obtained applying the BMT to any
point with u; =1 and u, € [0, 1]. Thus, for any arbitrary support
domain, D C R?, there exists a subset, A C R, such that

D=MA ={(z.2) ER*: (22,21
= M(uy, up)with (up, u;) € A}

Consequently, for every Borel subset D C R? we can obtain A C R as
AL M YD) @)

Therefore, in order to draw a sample from a standard bivariate Gaussian
restricted within a domain D C R?, we can follow these two simple
steps:

1. Draw a point u’ = (3, u}) uniformly within the set A given by (4).
2. Transform u’ into a sample of the desired truncated Gaussian distri-
bution using the BMT, i.e. ' = (2}, Z}) = M(u}, u)).

Note that, even if D is unbounded, the set A is always bounded, since
A C R, which is bounded. Therefore, an efficient procedure can
always be found to perform step 1 (e.g. using rejection sampling).

As an example, consider the unbounded truncation domain
D ={(z2,21) : z +z1 + 0.9 < 0}, displayed in Fig. la. Note that the
vector Z = (z2, z1) can be uniquely represented by way of its polar co-
ordinates, r £ / z% + z% and 6 £ tan~!(z, /z). These polar co-ordinates
can be rewritten in terms of u = (up, u;), using (2) and (3), as
r=+/—2In(u;) and 6 = 27u,. Hence, u; = exp(—(z% +z§)/2) and
uy = 1/2mtan"!(z) /z,). Finally, inserting the expression for the bound-
ary of D, z; = —z; — 0.9, into the equations of #; and u,, we can easily
obtain the contour of the bounded set .4, shown in Fig. 1b.
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Fig. 1 Example of support domain (Fig. 1a), D = {(z5,z;): zo+z; + 0.9 <
0}; we can observe that for (z2,z;) € D we have r > 0.63 and 3mw/4 <
0 < 7m/4. The set A C R corresponding to D and the minimal rectangle
R, (dashed and dotted line) embedding A C R,, (Fig. 1b)

Uniform sampling inside A: The crucial issue for this approach is
sampling uniformly inside .4. Fortunately, when the support set D is
mapped into a simple region A, such as a rectangle, then we can
perform exact sampling (i.e. L.LD. uniform samples can be drawn
inside A without any rejection). This happens, for instance, for the
case in which D is the sector of a circle delimited by the radii », and
ry (r1 <r;) and the angles 6; and 6, (6, < 6,), which includes a
disk and a full circle as particular cases. The corresponding region .4
is a rectangle, i.e.

A=, ) e 2 <up <e 2, 6,/
<u; < 0,/Q2m)}

embedded inside the unit square R. Hence, it is straightforward to draw
samples uniformly and exactly from A using two independent uniform
random variables. Another relevant example of exact sampling occurs
when the boundary of D is a straight line passing through the origin,
i.e. azy + bzy = 0. In this case all points in D are completely expressed
by the inequalities » > 0 and tan~!{—b/a} < 6 < tan~'{—b/a} + m,
and A is again a rectangle. Additional examples of simple A regions
where exact sampling can be performed include triangles and sectors
of circles [5, 7].
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When exact sampling cannot be performed, then we can follow the
simple rejection sampling approach described in the sequel to draw
uniform samples inside \A. Given a domain D, we can find a circular
sector C,, that embeds D (i.e. D C C,,). Now, since R,, 2 M~1(C,,) is
a rectangular region (as explained above), and since
Ry =M1C,) 2 A=M(D), we can easily generate a point u’ uni-
formly inside R,,, accepting it only if it belongs to A (or, if it is easier,
we can check whether z = M(u’) belongs to D or not). The acceptance
probability of this approach, p, = | A|/|R,| with |- | indicating the
Lebesgue measure of a set, can be very close to one, as shown in the
simulations.

Simulations: In a first simulation we use a rectangular domain with ver-
tices (0, 0), (0, A), (A, 0) and (A, A). In this case, we can obtain LLD.
samples using the following rejection techniques:

e MI: Trivial rejection sampler using the non-truncated Gaussian PDF
as a proposal, accepting the samples that belong to D. This is equivalent
to drawing samples uniformly inside R, accepting those that belong to
A.

e M2: Since the set D is bounded (A < o0), we can use another trivial
rejection scheme: drawing samples uniformly within D and accepting
them with probability exp(—(zf + z%) /2).

e M3: A more refined rejection procedure, introduced in [6] and dis-
cussed for truncated Gaussian PDFs in [4], consists in building the
plane y = az; + Bz + ¢ tangent to the paraboloid y = (z3 + 23)/2 at
some arbitrary point (z}, z;) € D. This induces a proposal PDF

m(z1, 22) o< exp(—az; — Bzy — P) V(z1,22) €D ©)

which corresponds to two truncated independent exponential PDFs. We
consider two variants: the plane tangent at (z}, z;) = (0, 0) (M3-1) and
the plane tangent at (2}, z;) = (A/2, A/2) (M3-2).

e M4: This is our rejection strategy: drawing samples from the minimal
rectangle, R,y = [0, /2] x [1, exp{—A?}], that covers the set A (i.e.
Rm 2 A), and accepting them if they belong to A.

We apply these four rejection techniques, computing the acceptance
rate (AR), averaged over 50000 runs, against the area of the domain
D, A% The results are shown in Fig. 2. Note that, in this case, M2
and M3-1 are equivalent. Our method, M4, provides the best perform-
ance for A2 < 2.8 (i.e. A > 1.67). Furthermore, for A — oo our tech-
nique provides virtually exact sampling (i.e. AR — 1), whereas for
M1 the AR clearly approaches 1/4 and for M2 and M3 the AR — 0
as A — oo,
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Fig. 2 Acceptance rate (AR) against area of domain D, A’
M1 (x marks), M2 = M3-1 (triangles), M3-2 (squares) and M4 (solid line)

As a second example, we consider D = {(z3,21) : zp + 21 + ¢ < 0},
where ¢ is a constant parameter. In this case, we can just use the
trivial strategy M1 and our method M4. M2 cannot be applied, since
D is unbounded, and M3 is unpractical, since it is very difficult to
draw samples, using a direct method, from a bivariate exponential
PDF restricted to this kind of set. For ¢ = 0, our approach (M4) per-
forms exact sampling (i.e. AR = 1), whereas M1 provides an AR of
0.5. For ¢ = 0.9, M4 obtains an AR of 0.64, whereas M1 provides an
AR of 0.26. Finally, for ¢ = 2, M4 obtains an AR of 0.45, whereas
M1 provides an AR of 0.12. Hence, it can be seen that our approach
M4 always outperforms M1.

Conclusion: We have proposed a new approach to draw L.I.D. samples
from truncated bivariate normal distributions that allows sampling
within an arbitrary domain, without any restriction. For some truncation
regions, this technique provides exact sampling without any rejection.
For more general cases, it allows us to develop rejection sampling
approaches that can obtain better acceptance rates than state-of-the-art
methods. Furthermore, unlike most of the schemes available in the litera-
ture, our approach can always be used, regardless of whether the support
is bounded or not. Future lines include extending it to arbitrary N-dimen-
sional truncated Gaussian vectors.
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