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Introduction

DATA:
T € it could be easily generalized for x; € R”
Y € {0, 1}
{$k7 yk}jkvzl

We model directly the probability of an input x belonging to a class.




Introduction

We model directly the probability of an input x belonging to a class.
In this binary classification case, we focus on the probability of
belonging to the class labelled with the label “y k=1".

Model |[edit!

The logistic function is of the form: Probability of passing exam versus hours of studying
1 1.00- . . . *® s " = = » .
1 + e (z-p)/s

where u is a location parameter (the midpoint of the curve, where p(u) = 1/2) and
Sis a scale parameter. This expression may be rewritten as:

1
1 + e (Bot+h1x)

p(y = 1|z)=

p(y = 1|x)=

Probability of passing exam

where 3 = —u/s and is known as the intercept (it is the vertical intercept or y-
intercept of the line y = 3, + [;x), and By =1 / 8 (inverse scale parameter or rate
parameter): these are the y-intercept and slope of the log-odds as a function of x.

Conversely, © = —f3,/; and s = 1/, .

3
Hours studying



Equivalent expressions

1
1 4+ e—(Tr—p)/s

p(yr = l|xp) = Pk =

where 3y = —u /s and is known as the intercept (it is the vertical intercept or y-
intercept of the line y = 3, + B;x), and 31 = 1/s (inverse scale parameter or rate
parameter): these are the y-intercept and slope of the log-odds as a function of x.
Conversely, 4 = —f3, /3, and s = 1/3; .

1
- 1 + e—(BotpBizk)
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Binary case: likelihood function

1
p(yk — 1‘3%) = Pk — 1 + e (@e—p)/s

p(y|x) = p(y1, .. ynlz1, o an) = [ »s H (1— pr)

k:yr=1 k:yr=

If y k=0,1, we can rewrite:

1 —
p(y[x) = p(y1, -y, oan) = | [ ppr (1 —pi)



Binary case: likelihood function

If y k=0,1, we can rewrite:

1 —
p(¥|x) =p(Y1, s YN |15, TN) = szk (1 —pr) 7"

In the code that | sent In
- Studium, | used this

N
E Yk 1—yg formula in order to avoid
1ng y|X lOg [pk ] _I_ lOg[(l R pk) ] numerical issues, such
L—1 ~ as NaN for “0 times -Inf”
=“0 x -Inf”.

logp(y|X) — Z [?Jk; log (pk) = (1 — ?Jk:) log (1 — pk)]



First generalization:
With multimensional inputs
(straightforward)
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With multimensional inputs

DATA:

' 11 D
Xk = |Tk,1y---yLk.D| € R
Yk < {071}

{Xk'v yk}]kvzl



With multimensional inputs

Then we consider:

1

p(yk — 1 Xk) - 1 —|— 6_(50—|-51$k,1+52$k,2+----‘|‘5D$k,D)

1
— 1 —
p(yk Xk) 1 + 6_(50+Zg:1 Bdwkvd>

Here we have to learn all the betas !!!!



Simplifying the previous expressions “using vectors”

RE-DEFINING:
xr = [1, Tp.1,...,Tp.p] € RPT
AND:
B = |Bo, P1, .- BD.
then:




With multimensional inputs

The rest remains the same....same likelihood function:

pr = p(yr = 1|xx)

p(y|X)=p W1, - YnN|X1,...,XN) = Hpk (1 — p

etc....



Second generalization:
More than 2 classes....

“Multinomial logistic regression: Many explanatory variables (inputs) and
many categories (outputs, more than 2 classes)”
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Dealing with M classes

DATA:

X —

Lk 1yrsy Lk, D

TGRD

yr €4{0,1,2, ..., M — 1}

{Xk'v yk}]kvzl



Dealing with M classes

Again, we model directly the probability of an input x belonging to a class.

RE-DEFINING:

X, = |1, Tk 1, ...,ZCk’D]T c RV
AND:
B = Bm.0, Bmis s Bm.pl, withm=1,...,. M —1
then:

elgmxk

L+ 3050 e

Pk.m = P(Yr = m|Xg) =

M—1

Pk,0 = p(yr = 0[xg) =1 — Z M—1
m=1 1 + ijl eﬁij

616ka




Dealing with M classes

then:

elamxk

Pk.m = P(Yr = m|Xg) =

L+ 3050 e




Dealing with M classes

then, FINALLY:

Pk.m = Py = m|Xg) =




Dealing with M classes

OR MORE GENERALLY FOR a generic x (test input):

(g = mfx) = —

p(yr = ml|x

Yk ’ +ZM T _Bx
M—1 1

p(ye =0[x) =1 = )  p(yr =m|x) = Y —
m=1 1+ ijl ePix



Dealing with M classes

WE HAVE TO LEARN (M-1) VECTORS OF BETAs....
hence, D x (M-1) scalar numbers to learn !!!!

/617 "'7/6M—1



Example of construction of the likelihood function

Classes=0,1,2,3 — M =14 N =




Isotopic multi-output logistic
regression for parallel
classification problems
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DATA (multioutput - isotopic scenario)

OUTPUTS - isotopic scenario 9
1l Y1,1 Y1,2 Y1,3 Y1,N
r2y Y2,1 Y22 Y23 .- ... ... Y2,N DATA points (M):

{va Ym}%:l

ol Ym,1 Ym,2 Ynm,3 oo - oo YM N /

17 Ym = [ym,lyym,Za---aym,N]

Isotopic scenario: |
N outputs share the same Iinput x J = 1, 2, cons N



About the notation

A MORE PROPER NOTATION FOR THESE SLIDES SHOULD BE
OBTAINED SWITCHING M AND N:
- N should be the number of data points

- and M should be the number of outputs per each input x

However, we have used this notation for linking this part with the
slides on ITEM RESPONSE THEORY (where we use exactly the
notation employed here).

DATA points (M): -
yij € 10,1}
1Xm, Ym}%:l o 7

/ 1 =1,2,....M

Ym — [ym,lp Ym, 2y« ym,N]



About the notation
DATA points (M):

{va Ym}%:l

/

Ym — [ym,lp ?Jm,27 ooy ym,N]

Other vision of the data (“vertical vision”):



Other vision of the data

Other vision of the data (“vertical vision”):

a UTPUTS - isotopic scenario

o f

L9 y2’2 92,3 y27N

y172 y1,3 yl,N

Yym2 Ym,z .- oo YM N




But actually what can we do with this data?

For simplicity, considering scalar inputs x...just for simplicity and
facilitate the comparison with the IRT:

Tm € R AZm,Um et X =[e1, ..., a0]

We have N-parallel classification problems each one with

likelihood:
1

6_(5'37%_“3')/53'

p(/}\;j‘X):p(ylaj7°°.7yM7j|:I;17°°°7J;M): H pm?] H (]'_pmv.])

miYm 321 m:ym,j:O

P (Ym,j = 1|Tm) = Pm,j = 1

m 1—vy,,
p(yl,j7'°°7yM,j‘$1,... pr 3 1_pm3)( Yy 3)



But actually what can we do with this data?

We have N-parallel classification problems each one with
likelihood function. They share the same M inputs.

We have to find, in this case with scalar inputs, N different pairs of
mu and s, one for each parallel classification problems.

1
1 + e—(Tm—pj)/$;

p(ym,j = 1|z),) = Pm,j =

Hi,S;j toryg=1,...,. N



