Logistic Regression

Luca Martino

Introduction

DATA:

$$x_k \in \mathbb{R}$$
 it could be easily generalized for $\mathbf{x}_k \in \mathbb{R}^D$ $y_k \in \{0, 1\}$ $\{x_k, y_k\}_{k=1}^N$

We model directly the probability of an input x belonging to a class.

Introduction

We model directly the probability of an input x belonging to a class. In this binary classification case, we focus on the probability of belonging to the class labelled with the label "y_k=1".

Model [edit]

The logistic function is of the form:

$$p(y = 1|x) = \frac{1}{1 + e^{-(x-\mu)/s}}$$

where μ is a location parameter (the midpoint of the curve, where $p(\mu)=1/2$) and s is a scale parameter. This expression may be rewritten as:

$$p(y=1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

where $\beta_0=-\mu/s$ and is known as the intercept (it is the *vertical* intercept or *y*-intercept of the line $y=\beta_0+\beta_1 x$), and $\beta_1=1/s$ (inverse scale parameter or rate parameter): these are the *y*-intercept and slope of the log-odds as a function of x. Conversely, $\mu=-\beta_0/\beta_1$ and $s=1/\beta_1$.

Equivalent expressions

$$p(y_k = 1|x_k) = p_k = \frac{1}{1 + e^{-(x_k - \mu)/s}}$$

where $\beta_0=-\mu/s$ and is known as the intercept (it is the *vertical* intercept or *y*-intercept of the line $y=\beta_0+\beta_1 x$), and $\beta_1=1/s$ (inverse scale parameter or rate parameter): these are the *y*-intercept and slope of the log-odds as a function of x. Conversely, $\mu=-\beta_0/\beta_1$ and $s=1/\beta_1$.

$$p(y_k = 1|x_k) = p_k = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_k)}}$$

$$p(y_k = 1|x_k) = p_k = \frac{e^{\beta_0 + \beta_1 x_k}}{1 + e^{\beta_0 + \beta_1 x_k}}$$

Binary case: likelihood function

$$p(y_k = 1|x_k) = p_k = \frac{1}{1 + e^{-(x_k - \mu)/s}}$$

$$p(\mathbf{y}|\mathbf{x}) = p(y_1, ..., y_N | x_1, ..., x_N) = \prod_{k:y_k=1} p_k \prod_{k:y_k=0} (1 - p_k)$$

If y_k=0,1, we can rewrite:

$$p(\mathbf{y}|\mathbf{x}) = p(y_1, ..., y_N | x_1, ..., x_N) = \prod_{k=1}^{N} p_k^{y_k} (1 - p_k)^{1 - y_k}$$

Binary case: likelihood function

If y_k=0,1, we can rewrite:

$$p(\mathbf{y}|\mathbf{x}) = p(y_1, ..., y_N | x_1, ..., x_N) = \prod_{k=1}^{N} p_k^{y_k} (1 - p_k)^{1 - y_k}$$

$$\log p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{N} \left[\log \left[p_k^{y_k} \right] + \log [(1-p_k)^{1-y_k}] \right] \label{eq:state} \\ \text{Studium, I used this formula in order to avoid numerical issues, such as NaN for "0 times -Inf"}$$

In the code that I sent in as NaN for "0 times -Inf" ="0 x -Inf".

$$\log p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{N} [y_k \log (p_k) + (1 - y_k) \log (1 - p_k)]$$

First generalization: With multimensional inputs (straightforward)

Luca Martino

With multimensional inputs

DATA:

$$\mathbf{x}_{k} = [x_{k,1}, ..., x_{k,D}]^{\top} \in \mathbb{R}^{D}$$

$$y_{k} \in \{0, 1\}$$

$$\{\mathbf{x}_{k}, y_{k}\}_{k=1}^{N}$$

With multimensional inputs

Then we consider:

$$p(y_k = 1 | \mathbf{x}_k) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{k,1} + \beta_2 x_{k,2} + \dots + \beta_D x_{k,D})}}$$
$$p(y_k = 1 | \mathbf{x}_k) = \frac{1}{1 + e^{-(\beta_0 + \sum_{d=1}^D \beta_d x_{k,d})}}$$

Here we have to learn all the betas !!!!

Simplifying the previous expressions "using vectors"

RE-DEFINING:

$$\mathbf{x}_k = [1, x_{k,1}, ..., x_{k,D}]^{\top} \in \mathbb{R}^{D+1}$$

AND:

$$\beta = [\beta_0, \beta_1, ..., \beta_D]$$

then:

$$p_k = p(y_k = 1|\mathbf{x}_k) = \frac{1}{1 + e^{-(\boldsymbol{\beta}\mathbf{x}_k)}} = \frac{e^{\boldsymbol{\beta}\mathbf{x}_k}}{1 + e^{\boldsymbol{\beta}\mathbf{x}_k}}$$

With multimensional inputs

The rest remains the same....same likelihood function:

$$p_k = p(y_k = 1|\mathbf{x}_k)$$

$$p(\mathbf{y}|\mathbf{X}) = p(y_1, \dots, y_N|\mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{k=1}^{n} p_k^{y_k} (1 - p_k)^{1 - y_k}$$

etc....

Second generalization: More than 2 classes....

"Multinomial logistic regression: Many explanatory variables (inputs) and many categories (outputs, more than 2 classes)"

Luca Martino

DATA:

$$\mathbf{x}_{k} = [x_{k,1}, ..., x_{k,D}]^{\top} \in \mathbb{R}^{D}$$

$$y_{k} \in \{0, 1, 2, ..., M - 1\}$$

$$\{\mathbf{x}_{k}, y_{k}\}_{k=1}^{N}$$

Again, we model directly the probability of an input x belonging to a class.

RE-DEFINING:

$$\mathbf{x}_k = [1, x_{k,1}, ..., x_{k,D}]^{\top} \in \mathbb{R}^{D+1}$$

AND:

$$\boldsymbol{\beta}_m = [\beta_{m,0}, \beta_{m,1}, ..., \beta_{m,D}], \text{ with } m = 1, ..., M-1$$

then:

$$p_{k,m} = p(y_k = m | \mathbf{x}_k) = \frac{e^{\boldsymbol{\beta}_m \mathbf{x}_k}}{1 + \sum_{j=1}^{M-1} e^{\boldsymbol{\beta}_j \mathbf{x}_k}}$$

$$p_{k,0} = p(y_k = 0|\mathbf{x}_k) = 1 - \sum_{m=1}^{M-1} \frac{e^{\beta_m \mathbf{x}_k}}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k}}$$

then:

$$p_{k,m} = p(y_k = m | \mathbf{x}_k) = \frac{e^{\boldsymbol{\beta}_m \mathbf{x}_k}}{1 + \sum_{j=1}^{M-1} e^{\boldsymbol{\beta}_j \mathbf{x}_k}}$$

$$p_{k,0} = p(y_k = 0 | \mathbf{x}_k) = 1 - \sum_{m=1}^{M-1} \frac{e^{\beta_m \mathbf{x}_k}}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k}} = 1 - \frac{\sum_{m=1}^{M-1} e^{\beta_m \mathbf{x}_k}}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k}}$$

$$= \frac{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k} - \sum_{m=1}^{M-1} e^{\beta_m \mathbf{x}_k}}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k}}$$

$$= \frac{1}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k}}$$

then, FINALLY:

$$p_{k,m} = p(y_k = m | \mathbf{x}_k) = \frac{e^{\beta_m \mathbf{x}_k}}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k}}$$

$$p_{k,0} = p(y_k = 0 | \mathbf{x}_k) = \frac{1}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}_k}}$$

OR MORE GENERALLY FOR a generic x (test input):

$$p(y_k = m|\mathbf{x}) = \frac{e^{\boldsymbol{\beta}_m \mathbf{x}}}{1 + \sum_{j=1}^{M-1} e^{\boldsymbol{\beta}_j \mathbf{x}}}$$

$$p(y_k = 0|\mathbf{x}) = 1 - \sum_{m=1}^{M-1} p(y_k = m|\mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{M-1} e^{\beta_j \mathbf{x}}}$$

WE HAVE TO LEARN (M-1) VECTORS OF BETAs.... hence, D x (M-1) scalar numbers to learn !!!!

$$eta_1,...,eta_{M-1}$$

Example of construction of the likelihood function

Classes =
$$0, 1, 2, 3 \Longrightarrow M = 4$$

$$N=5$$

Isotopic multi-output logistic regression for parallel classification problems

Luca Martino

DATA (multioutput - isotopic scenario)

OUTPUTS - isotopic scenario

$$y_{i,j} \in \{0,1\}$$

isotopic scenario:

N outputs share the same input x

DATA points (M):

$$\{\mathbf{x}_{m}, \mathbf{y}_{m}\}_{m=1}^{M}$$

 $\mathbf{y}_{m} = [y_{m,1}, y_{m,2}, ..., y_{m,N}]$

$$i = 1, 2, ..., M$$

 $j = 1, 2, ..., N$

About the notation

A MORE PROPER NOTATION FOR THESE SLIDES SHOULD BE OBTAINED SWITCHING M AND N:

- N should be the number of data points
- and M should be the number of outputs per each input x

However, we have used this notation for linking this part with the slides on ITEM RESPONSE THEORY (where we use exactly the notation employed here).

DATA points (M):

$$\{\mathbf{x}_{m}, \mathbf{y}_{m}\}_{m=1}^{M}$$

 $\mathbf{y}_{m} = [y_{m,1}, y_{m,2}, ..., y_{m,N}]$

$$y_{i,j} \in \{0,1\}$$

$$i = 1, 2, ..., M$$

$$j = 1, 2, ..., N$$

About the notation

DATA points (M):

$$\{\mathbf{x}_{m}, \mathbf{y}_{m}\}_{m=1}^{M}$$

$$\mathbf{y}_{m} = [y_{m,1}, y_{m,2}, ..., y_{m,N}]$$

$$\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M]$$

Other vision of the data ("vertical vision"):

$$\{x_m, y_{m,j}\}_{m=1}^{M}$$

$$\tilde{\mathbf{y}}_j = [y_{1,j}, y_{2,j}, ..., y_{M,j}]^{\top}$$

Other vision of the data

Other vision of the data ("vertical vision"):

But actually what can we do with this data?

For simplicity, considering scalar inputs x...just for simplicity and facilitate the comparison with the IRT:

$$x_m \in \mathbb{R} \quad \{x_m, y_{m,j}\}_{m=1}^M \quad \mathbf{X} = [x_1, ..., x_M]$$

We have N-parallel classification problems each one with likelihood:

$$p(y_{m,j} = 1 | x_m) = p_{m,j} = \frac{1}{1 + e^{-(x_m - \mu_j)/s_j}}$$

$$p(\widetilde{\mathbf{y}}_j | \mathbf{X}) = p(y_{1,j}, \dots, y_{M,j} | x_1, \dots, x_M) = \prod_{m: y_{m,j} = 1} p_{m,j} \prod_{m: y_{m,j} = 0} (1 - p_{m,j})$$

$$p(y_{1,j}, \dots, y_{M,j} | x_1, \dots, x_M) = \prod_{m: y_{m,j} = 1} p_{m,j} (1 - p_{m,j})^{(1 - y_{m,j})}$$

But actually what can we do with this data?

We have N-parallel classification problems each one with likelihood function. They share the same *M* inputs.

We have to find, in this case with scalar inputs, N different pairs of mu and s, one for each parallel classification problems.

$$p(y_{m,j} = 1 | x_m) = p_{m,j} = \frac{1}{1 + e^{-(x_m - \mu_j)/s_j}}$$
 $\mu_j, s_j \text{ for } j = 1, ..., N$