SOLVED problems - Convolution Sum - part 1

Discrete Time Systems (DTS)

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u>

Given:

$$x[0] = 2$$
, $x[1] = -3$, $x[n] = 0$ otherwise $h[-2] = 1$, $h[-1] = 5$, $h[0] = 0$, $h[1] = -3$, $h[n] = 0$ otherwise

Obtain the output of the LTI system y[n], with impulse response h[n]

Namely, y[n]=?

We know that:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$
$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k]$$

 $k=-\infty$

Moreover, in this example x[n] and h[n] have <u>finite lengths</u> and, in this scenario, there are (at least) two ways/methods of computing the convolution sum.

We will do both (and also with two sub-versions).

In both methods, it is useful to recall that with signals with finite length, we have the following "a-priori" information:

```
(1) y[n] starts at = start of x[n] + start of h[n]
```

- (2) y[n] finishes at = end of x[n] + end of h[n]
- (3) the length of y[n] = length of x[n] + length of h[n]-1

The rest of y[n] is for "sure" zero ...

Then, in this example:

- start of x[n] at 0, start of h[n] at -2
- end of x[n] at 1, end of h[n] at 1
- the length of x[n] is 2
- the length of h[n] is 4
- (1) y[n] starts at = 0+2=-2
- (2) y[n] finishes at = 1+1=2
- (3) the length of y[n] = 2+4-1=5

FIRST METHOD - first way: Note that we can write

$$x[n] = 2\delta[n] - 3\delta[n-1]$$

And for the property of convolution with deltas, we have:

$$y[n] = x[n] * h[n] = 2h[n] - 3h[n - 1]$$

Example - Problem 1 FIRST METHOD - first way

$$y[n] = x[n] * h[n] = 2h[n] - 3h[n-1]$$

We build a table:

\boldsymbol{n}	y[n]
-3	2h[-3] - 3h[-4] = 0
-2	2h[-2] - 3h[-3] = 2
-1	2h[-1] - 3h[-2] = 7
0	2h[0] - 3h[-1] = -15
1	2h[1] - 3h[0] = -6
2	2h[2] - 3h[1] = 9
3	2h[3] - 3h[2] = 0
4	2h[4] - 3h[3] = 0

Example - Problem 1 FIRST METHOD - first way

Solution:

$$y[-2] = 2, y[-1] = 7, y[0] = -15, y[1] = -6, y[2] = 9$$

 $y[n] = 0$ otherwise

This is already the solution... but we solve in other ways...

FIRST METHOD - second way: Note that we can write

$$h[n] = \delta[n+2] + 5\delta[n+1] - 3\delta[n-1]$$

And for the property of convolution with deltas, we have:

$$y[n] = x[n] * h[n] = x[n+2] + 5x[n+1] - 3x[n-1]$$

(IMP. REMARK: note that in this case, we have y[n] expressed as a finite linear combination of translated version of x[n]... we have already the <u>linear difference equation</u> - with constant coefficients - associated to our LTI system.)

Example - Problem 1 FIRST METHOD - second way

$$y[n] = x[n] * h[n] = x[n+2] + 5x[n+1] - 3x[n-1]$$

We	build	a	tab	le:	
	Dalla		CUN		

$y \mid \gamma$	\boldsymbol{l}
-----------------	------------------

-3	x[-1] + 5x[-2] - 3x[-4] = 0
-2	x[0] + 5x[-1] - 3x[-3] = 2
-1	x[1] + 5x[0] - 3x[-2] = 7
0	x[2] + 5x[1] - 3x[-1] = -15
1	x[3] + 5x[2] - 3x[0] = -6
2	x[4] + 5x[3] - 3x[1] = 9
3	x[5] + 5x[4] - 3x[2] = 0
4	x[6] + 5x[5] - 3x[3] = 0

...obtaining the same solution !!!

SECOND METHOD - first way: Note that

$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k]$$

$$y[n] = \sum_{k=-\infty}^{+\infty} h[k]z[k-n]$$

$$z[k] = x[-k]$$

SECOND METHOD - first way: Note that

$$y[\mathbf{0}] = \sum_{k=-\infty}^{+\infty} h[k]z[k-\mathbf{0}]$$

$$= \sum_{k=-\infty}^{+\infty} h[k]z[k]$$

$$= ...0 + 0 + (1)0 + 5(-3) + 2(0) - 3(0) + 0 + 0...$$

$$= ...0 + 0 + 0 - 15 + 0 + 0 + 0 + 0 ...$$

$$y[0] = -15$$

$$y[-3] = \sum_{k=-\infty}^{+\infty} h[k]z[k+3]$$

$$= ...0 + 0 + 0 + 0 + 0 + 0 + 0 + 0....$$

$$y[-3] = 0$$

$$y[-2] = \sum_{k=-\infty}^{+\infty} h[k]z[k+2]$$

$$y[-2] = 2$$

$$y[-1] = \sum_{k=-\infty}^{+\infty} h[k]z[k+1]$$

$$= ...0 + 1(-3) + 5(2) + 0 + 0 + 0 + 0 + 0....$$

$$= ...0 - 3 + 10 + 0 + 0 + 0 + 0$$

$$y[-1] = 7$$

$$y[1] = \sum_{k=-\infty}^{+\infty} h[k]z[k-1]$$

$$= ...0 + 0 + 0 + 0 + 0 - 3(2) + 0 + 0....$$

$$= ...0 + 0 + 0 + 0 + 0 - 6 + 0 + 0....$$

$$y[1] = -6$$

$$y[2] = \sum_{k=-\infty}^{+\infty} h[k]z[k-2]$$

$$= ...0 + 0 + 0 + 0 + 0 + 0 - 3(-3) + 0 + 0....$$

$$= ...0 + 0 + 0 + 0 + 0 + 9 + 0 + 0....$$

$$y[2] = 9$$

$$y[3] = \sum_{k=-\infty}^{+\infty} h[k]z[k-3]$$

= ...0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

$$y[3] = 0$$

SECOND METHOD - SECOND way: Note that

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]z[k+n]$$

$$z[k] = h[-k]$$

$$y[0] = \sum_{k=-\infty}^{+\infty} x[k]z[k]$$

$$= ...0 + 0 + 0 - 15 + 0 + 0 + 0 + 0 ...$$

y[0] = -15

SECOND METHOD - SECOND way

SECOND METHOD - SECOND way

FINISH the second method - second way at home !!! and deliver to me your solution, please :)

Given:

$$x[0] = 1, \quad x[1] = 1, \quad x[2] = 1, \quad x[n] = 0$$
 otherwise $h[0] = 0.5, h[1] = 2, \quad h[n] = 0$ otherwise

Obtain the output of the LTI system y[n], with impulse response h[n]

Namely, y[n]=?

Then, in this example:

- start of x[n] at 0, start of h[n] at 0
- end of x[n] at 2, finish of h[n] at 1
- the length of x[n] is 3
- the length of h[n] is 2
- (1) y[n] starts at = 0+0=0
- (2) y[n] finishes at = 2+1=3
- (3) the length of y[n] = 3+2-1=4

Solution (try to do at home as the previous one):

$$y[n] = 0.5x[n] + 2x[n-1]$$

$$y[0] = 0.5, \quad y[1] = 2.5, \quad y[2] = 2.5, \quad y[3] = 2, \quad y[n] = 0 \text{ otherwise}$$

Given:

$$x[-3] = -3$$
, $x[1] = 1$, $x[2] = 1$, $x[n] = 0$ otherwise $h[0] = -0.5$, $h[2] = 2$, $h[n] = 0$ otherwise

Obtain the output of the LTI system y[n], with impulse response h[n]

Namely, y[n]=?

Then, in this example:

- start of x[n] at -3, start of h[n] at 0
- end of x[n] at 2, finish of h[n] at 2
- the length of x[n] is 6
- the length of h[n] is 3
- (1) y[n] starts at = -3+0=-3
- (2) y[n] finishes at = 2+2=4
- (3) the length of y[n] = 6+3-1=8

Solution (try to do at home as the previous one):

$$y[n] = -0.5x[n] + 2x[n-2]$$

$$y[-3] = 1.5, \quad y[-2] = 0, \quad y[-1] = -6, \quad y[0] = 0 \quad y[1] = -0.5,$$

 $y[2] = -0.5 \quad y[3] = 2, \quad y[4] = 2, \quad y[n] = 0 \text{ otherwise}$

Given:

$$x[0] = 2$$
, $x[1] = -3$, $x[n] = 0$ otherwise $h[-2] = 1$, $h[-1] = 5$, $h[0] = 0$, $h[1] = -3$, $h[n] = 0$ otherwise

Obtain the output of the LTI system y[n], with impulse response h[n]

Namely, y[n]=?

Then, in this example:

- start of x[n] at 0, start of h[n] at -2
- end of x[n] at 1, finish of h[n] at 1
- the length of x[n] is 2
- the length of h[n] is 4
- (1) y[n] starts at = 0+(-2)=-2
- (2) y[n] finishes at = 1+1=2
- (3) the length of y[n] = 4+2-1=5

Solution (try to do at home as the previous one):

$$y[n] = 2h[n] - 3h[n-1]$$

$$y[-2] = 2$$
, $y[-1] = 7$, $y[0] = -15$, $y[1] = -6$ $y[2] = 9$, $y[n] = 0$ otherwise

Questions?