SOLVED problems - Convolution Sum - part 2

Discrete Time Systems (DTS)

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u>

Given:

$$x[0] = 2,$$
 $x[n] = 0$ otherwise $h[-3] = -1,$ $h[n] = 0$ otherwise

- * Obtain the output of the LTI system y[n], with impulse response h[n] Namely, y[n]=?
- * Write the corresponding *linear difference equation* of this system (with constant coefficients and null initial conditions)

Then, in this example:

- start of x[n] at 0, start of h[n] at -3
- end of x[n] at 0, finish of h[n] at -3
- the length of x[n] is 1
- the length of h[n] is 1
- (1) y[n] starts at = 0+(-3)=-3
- (2) y[n] finishes at = 0+(-3)=-3
- (3) the length of y[n] = 1+1-1=1

Solution of first point (try to do at home as the previous one):

$$y[n] = 2h[n]$$
 or $y[n] = -x[n+3]$

$$y[-3] = -2, \quad y[n] = 0$$
 otherwise

Solution of second point:

$$y[n] = -x[n+3]$$

Given:

$$x[0] = 2,$$
 $x[1] = 2,$ $x[n] = 0$ otherwise $h[-3] = -1,$ $h[n] = 0$ otherwise

- * Obtain the output of the LTI system y[n], with impulse response h[n] Namely, y[n]=?
- * Write the corresponding *linear difference equation* of this system (with constant coefficients and null initial conditions)

Then, in this example:

- start of x[n] at 0, start of h[n] at -3
- end of x[n] at 1, finish of h[n] at -3
- the length of x[n] is 2
- the length of h[n] is 1
- (1) y[n] starts at = 0+(-3)=-3
- (2) y[n] finishes at = 1+(-3)=-2
- (3) the length of y[n] = 2+1-1=2

Solution of first point (try to do at home as the previous one):

$$y[n] = 2h[n] + 2h[n-1]$$
 or $y[n] = -x[n+3]$

$$y[-3] = -2, \quad y[-2] = -2, \quad y[n] = 0$$
 otherwise

Solution of second point: (again as Example 5)

$$y[n] = -x[n+3]$$

Given:

$$x[0] = 2, \quad x[n] = 0$$
 otherwise $h[-3] = -1, \quad h[0] = 2, \quad h[n] = 0$ otherwise

- * Obtain the output of the LTI system y[n], with impulse response h[n] Namely, y[n]=?
- * Write the corresponding *linear difference equation* of this system (with constant coefficients and null initial conditions)

Then, in this example:

- start of x[n] at 0, start of h[n] at -3
- end of x[n] at 0, finish of h[n] at 0
- the length of x[n] is 1
- the length of h[n] is 4
- (1) y[n] starts at = 0+(-3)=-3
- (2) y[n] finishes at = 0+0=0
- (3) the length of y[n] = 1+4-1=4

Solution of first point (try to do at home as the previous one):

$$y[n] = 2h[n]$$
 or $y[n] = -x[n+3] + 2x[n]$

$$y[-3] = -2$$
, $y[-2] = 0$, $y[-1] = 0$,
 $y[0] = 4$, $y[n] = 0$ otherwise

Solution of second point:

$$y[n] = -x[n+3] + 2x[n]$$

NOW WE CONSIDER SIGNALS with INFINITE LENGTHS

Given:

$$x[n] = a^n u[n]$$

$$h[n] = b^n u[n] \quad \text{with } a \neq b$$

Obtain the output of the LTI system y[n], with impulse response h[n]

Namely, y[n]=?

We know that:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k]$$

Then we can write:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{+\infty} a^k u[k] b^{n-k} u[n-k]$$

We have:
$$y[n] = \sum_{k=-\infty}^{+\infty} a^k b^{n-k} u[k] u[n-k]$$

$$y[n] = 0 \text{ for all } n < 0$$

Looking this:

$$y[n] = \sum_{k=-\infty}^{+\infty} a^k b^{n-k} u[k] u[n-k]$$

$$y[n] = \sum_{k=0}^{+\infty} a^k b^{n-k} u[n-k]$$

Looking this:

We have:
$$y[n] = \sum_{k=0}^{\infty} a^k b^{n-k} u[n-k]$$

$$y[n] = \sum_{k=0}^{n} a^k b^{n-k}$$

With more rearrangements:

$$y[n] = \sum_{k=0}^{\infty} a^k b^{n-k}$$

$$y[n] = \sum_{k=0}^{n} \left(\frac{a}{b}\right)^k b^n$$

$$y[n] = b^n \sum_{k=0}^n \left(\frac{a}{b}\right)^k$$

Recalling:
$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

with:
$$r = \frac{a}{b}$$

We finally obtain:
$$y[n] = b^n \sum_{k=0}^n \left(\frac{a}{b}\right)^k = b^n \frac{1-\left(\frac{a}{b}\right)^{n+1}}{1-\left(\frac{a}{b}\right)}$$

This is ALMOST the solution:
$$y[n] = b^n \frac{1 - \left(\frac{a}{b}\right)^{n+1}}{1 - \left(\frac{a}{b}\right)}$$

(just for make it more "pretty")

with some rearrangements:
$$y[n] = \frac{b^n - a^{n+1} \frac{1}{b}}{\frac{b-a}{b}}$$
 just for make it more "pretty")

$$y[n] = \frac{b^{n+1} - a^{n+1}}{b - a}$$

The complete solution is:
$$\begin{cases} y[n] = \frac{b^{n+1} - a^{n+1}}{b - a} & n \geq 0 \\ y[n] = 0 & n < 0 \end{cases}$$

That can be summarized as:
$$y[n] = \frac{b^{n+1} - a^{n+1}}{b-a} u[n]$$

Note that with a=b... we have a indeterminate form....

NOW WE CONSIDER SIGNALS with INFINITE LENGTHS

Given:

$$x[n] = a^n u[n]$$

$$h[n] = a^n u[n]$$

Obtain the output of the LTI system y[n], with impulse response h[n]

Namely, y[n]=?

Following Example 8, we can easily arrive to:

$$y[n] = 0$$
 for all $n < 0$

and:

$$y[n] = \sum_{k=0}^{n} a^k a^{n-k}$$

$$y[n] = a^n \sum_{k=0}^{\infty} 1$$

Then, thinking to sum (n+1)-times "1": $y[n] = a^n \sum_{k=0}^{n} 1$

$$y[n] = a^{n} (1 + 1 + 1 + 1 + 1)$$

$$(n+1)-times$$

$$y[n] = a^n(n+1)$$

The complete solution is:
$$\begin{cases} y[n] = a^n(n+1) & n \geq 0 \\ y[n] = 0 & n < 0 \end{cases}$$

That can be summarized as: $y[n] = a^n(n+1)u[n]$

Questions?