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Abstract In this work, we prove the existence of linear recurrences of order M with
a non-trivial solution vanishing exactly on the set of gaps (or a subset) of a numerical
semigroup S finitely generated by a1 < a2 < · · · < aN and M = aN .
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1 Introduction and problem statement

In this work, we study certain issues posed by R. Fröberg and B. Shapiro in [5]. In-
spired by the Skolem-Mahler-Lech Theorem [6], they have defined the variety V(M;I ),
the set of all M-order linear recurrence equations with a non-trivial solution vanish-
ing at least at all the points of a given non-empty finite set I ⊂ N. They have related
the study of a particular open subvariety of V(M;I ) to ideals generated by Schur func-
tions [7]. They also stated certain open problems. For instance, one open issue is to
understand for which pairs (M; I ) the variety V(M;I ) is empty or not.

Here, we prove that the variety V(M;I ) is non-empty when I is a subset of the gaps
of a numerical semigroup S finitely generated by a1 < a2 < · · · < aN and M = aN .
We provide the analytic form of these suitable recurrence equations, jointly with the
proper initial conditions. The solutions become zero only at the gaps of S. In the
sequel, we recall briefly some useful background material and introduce more specif-
ically our goal.
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1.1 Numerical semigroups

Numerical semigroups have been studied since the 19th century and they appear nat-
urally in combinatorics and commutative algebra. In this work, we consider a numer-
ical semigroup S embedded in (N ∪ {0},+). Given N integers a1, a2, . . . , aN ∈ N,
a (finitely generated) numerical semigroup S [3] is defined as

S = 〈a1, a2, . . . , aN 〉 =
{

N∑
i=1

niai : ni ∈ N∪ {0}
}

.

If a natural number does not belong to S it is called a gap of S. We denote as
�(a1, . . . , aN) := N \ S, the set of the gaps of S. We have |�(a1, . . . , aN)| < ∞
if and only if gcd(a1, a2, . . . , aN) = 1 (in literature, it is often required as neces-
sary condition). However, one can always reduce to this case. We do not require
that a1, a2, . . . , aN are a minimal set of generators for S and we always assume that
a1 < a2 < · · · < aN and gcd(a1, . . . , aN) = 1.

The gaps of a numerical semigroup S are well studied [9] and strongly connected,
for instance, with Frobenius number’s problem and Hilbert function’s problem [8].
The maximal element of �(a1, . . . , aN) (with respect to the canonical order of N) is
called the Frobenius number.

1.2 The variety of linear recurrences

We now present the open questions, stated in [5], that we deal with in the sequel.
First of all, we associate to every M-tuple of complex numbers α = (α1, . . . , αM) the
following linear recurrence equation U(α):

U(α): gk + α1gk−1 + · · · + αigk−i + · · · + αMgk−M = 0. (1)

If αM �= 0, then U(α) is of order M . The solutions of a linear homogeneous recur-
rence equation with constant coefficients are well-known [2] and they depend on the
roots of the characteristic polynomial of U(α),

pα(y): yM + α1y
M−1 + · · · + αiy

i + · · · + αM = 0.

Let {ρ1, . . . , ρM} be the set of the roots of pα(y) (called characteristic roots or
poles). If the roots ρi are real and distinct, i.e., ρi ∈ R, ρi �= ρj with i �= j and
i, j ∈ {1, . . . ,M}, a generic solution of the recurrence equation has the following
analytic form

gk = c1ρ
k
1 + c2ρ

k
2 + · · · + cMρk

M, (2)

where the coefficients ci depend on the initial conditions associated to the recurrence
equation (1). With multiple roots and complex roots, other functional forms appear
in the solutions like cosine and sine functions [2].

Definition 1.1 Let M ∈ N and let I be a non empty finite subset of N. The open
linear recurrence variety associated to the pair (M; I ), V(M;I ), is the set of all linear
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recurrences of order exactly M having a non-trivial solution vanishing at least in all
the points of I .

Using the bijection U(−), we can always think the set of all linear recurrences
(of order at most M) as the affine space A

M
C

. Being of order exactly M means that
they belong to the affine principal open set AM

C
\ {αM �= 0}.

In [5], Fröberg and Shapiro prove that V(M;I ) is a algebraic variety and they ask
the following questions:

Question (a) For which pairs (M; I ) the variety V(M;I ) is empty/not empty? and (b),
if V(M;I ) �= ∅, is there a recurrence vanishing in a finite number of points?

In the rest of this work, we show that to each numerical semigroup S =
〈a1, a2, . . . , aN 〉 it is possible to associate a recurrence US of order aN vanishing
exactly on its finite number of gaps �(a1, . . . , aN), so that V(aN ;�(a1,...,aN )) �= ∅.

2 The recurrence associated to a numerical semigroup

In this section, we first provide a novel characteristic function related to the semi-
group S. Then, we construct the recurrence US associated to the semigroup S =
〈a1, a2, . . . , aN 〉. Let w1,w2, . . . ,wN be strictly positive real numbers. Let us define
the polynomial F1(z) = ∑N

i=1 wiz
ai . We also set

G(z) = 1

1 − F1(z)
= 1

1 − w1za1 − · · · − wNzaN
. (3)

We denote by gk the coefficient of zk in the power series expansion of G(z), i.e.,
G(z) = ∑+∞

k=0 gkz
k .

Lemma 2.1 The sequence of coefficients, {gk}k∈N∪{0}, is the solution of the recur-
rence

US : gk = w1gk−a1 + · · · + wNgk−aN
, ∀k > 0, (4)

with initial condition g0 = 1 and gj = 0, for −aN < j < 0.

Proof We can rewrite Eq. (3) as G(z)(1 − w1z
a1 − · · · − wNzaN ) = 1. Since G(z) =∑+∞

k=0 gkz
k , replacing above, we obtain easily

∑+∞
k=0 gkz

k −w1
∑+∞

k=0 gkz
k+a1 −· · ·−

wN

∑+∞
k=0 gkz

k+aN = 1, and also

+∞∑
k=0

gkz
k − w1

+∞∑
i=a1

gi−a1z
i − · · · − wN

+∞∑
j=aN

gj−aN
zj = 1.

Now, setting gj = 0, for −aN < j < 0, we can also rewrite the left-side of the previ-
ous equation as g0 +∑+∞

k=1(gk −w1gk−a1 −· · ·−wNgk−aN
)zk = 1. Finally, note that

to hold the equality we need that g0 = 1 and gk − w1gk−a1 − · · · − wNgk−aN
= 0. �
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The recurrence in (4) is denoted by US and it is associated to the semigroup S =
〈a1, a2, . . . , aN 〉. In the sequel, we link this result with the questions stated in the
previous section. We recall that we do not require that a1, a2, . . . , aN is a minimal set
of generators of S.

Lemma 2.2 The coefficient gk is zero if and only if k /∈ S.

Proof Using that 1
1−x

= ∑
i≥0 xi , then G(z) = ∑∞

k=0 gkz
k = ∑∞

t=0 Ft(z) where we

have set Ft(z) = [F1(z)]t and F0(z) = 1. The coefficients of Ft(z) = (
∑N

i=1 wiz
ai )t

are non-zero only on the z-powers having for exponent an element of the semigroup
given by a sum of t generators of S (non necessarily different), that is

∑t
q=1 aiq where

1 ≤ iq ≤ N . Indeed

Ft(z) =
(

N∑
i=1

wiz
ai

)t

=
∑ t∏

q=1

wiq z
aiq =

∑(
t∏

q=1

wiq

)
z
(
∑t

q=1 aiq )
. (5)

For this reason, in the sum
∑∞

t=0 Ft (z) the exponents of the power zi with non zero
coefficients are exactly all the elements of S. Therefore, one gets the statement. �

Theorem 2.1 Let S = 〈a1, a2, . . . , aN 〉 and let I ⊆ �(a1, a2, . . . , aN). Then
V(β;I ) �= ∅, for all β ∈ S, with β ≥ aN .

Proof For every choice of strictly positive real numbers {wi}Ni=1, the recurrence
equation US , given in (4), belongs to V(aN ;I ). Indeed, comparing Eqs. (1) and (4),
we note easily that αj = −wk if j = ak and zero otherwise, with wN �= 0, so that
αaN

�= 0. Hence US is a recurrence equation of order aN . Using Lemma 2.2, we
know that a solution {gk}k∈N is zero if and only if k /∈ S. This proves the result for
β = aN . For β > aN , we observe that the semigroup S does not change if we add to
the generators the element β ∈ S. Since we have never required that {a1, . . . , aN }
is a minimal set of generators for S, we apply again the previous theorem with
a1 < a2 < · · · < aN < β . �

We have seen that for any finitely generated numerical semigroup S such that
gcd(a1, a2, . . . , aN) = 1, the Frobenius number, g(S), exists and every integer k

greater than g(S) belongs to S. Then, we could narrow down the previous result:

Corollary 2.1 Let S = 〈a1, a2, . . . , aN 〉 and let I ⊆ �(a1, a2, . . . , aN). Then there
exists a constant value K ∈ N such that for all β > K , we have V(β;I ) �= ∅.

We can also easily provide certain informations about the dimension of the variety
V(aN ,I). We remark that in algebraic geometry one often uses the so-called Krull
dimension instead of the topological dimension. A suitable definition is given in [1],
for instance. However, in this article, the reader can suppose that the Krull dimension
is the topological one, because we work on the complex field.
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Corollary 2.2 Let S = 〈a1, a2, . . . , aN 〉 and let I ⊆ �(a1, a2, . . . , aN). Then the
Krull dimension of V(aN ;I ), is at least N , i.e., dimC(V(aN ;I )) ≥ N .

Proof We remark that V(aN ;I ) is an open complex algebraic variety (since defined by
polynomial equation and by αaN

�= 0, see [5]). Let W be the subset of V(aN ;I ) defined
by the recurrences (4) for every choice of strictly positive real number {w1, . . . ,wN }.
In Theorem 2.1, we have proved that V(aN ;I ) �= ∅ by showing that W �= ∅.

We observe that W is isomorphic to R
N
>0. Each complex algebraic variety that

contains the non-algebraic subset RN
>0 has a complex sub-variety C containing W

and of Krull dimension at least N , W ⊂ C ⊆ V(aN ;I ). Thus dimC(V(aN ;I )) ≥ N . �

2.1 Probabilistic interpretation

If the coefficients wi ≥ 0, are chosen such that
∑N

i=1 wi = 1, they define a probabil-
ity mass, and the functions Ft(z) = [F1(z)]t with F1(z) = ∑N

i=1 wiz
ai , defined in the

proof of Lemma 2.2, and G(z) have a probabilistic interpretation. Let Xt be a discrete
random variable taking values in N, and t ∈ N. We can define, for instance, a random
walk associated to the semigroup S = 〈a1, a2, . . . , aN 〉 as Xt = Xt−1 +ai , with prob-
ability wi , i = 1, . . . ,N , starting with X0 = 0. The function Ft(z) represents the
probability generating function (PGF) [4] associated to the probability of visiting the
state k exactly at the time instant t , ft,k = Prob{Xt = k}, i.e., Ft(z) = ∑t ·aN

k=0 ft,kz
k .

Let us also consider now the probability of visiting the state k, i.e.,

gk = Prob{Xt = k for some t ∈ N}, k ∈ N.

Basic statistical considerations [4] lead us to write the PGF G(z) corresponding to
these probability as G(z) = ∑∞

t=1 Ft (z) and so we obtain G(z) = 1
1−w1z

a1 −···−wNzaN
.

The probabilities {gk}k∈N of visiting a state k, satisfy the linear recurrence equa-
tion US . They are zero if and only if these states k coincides exactly with the gaps of
the numerical semigroup S, i.e., k ∈ �(a1, a2, . . . , aN).
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