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a b s t r a c t

The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo methods such as
Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. In the IS context, an ap-
proximation ESS of the theoretical ESS definition is widely applied, involving the inverse of the sum of
the squares of the normalized importance weights. This formula, ESS , has become an essential piece
within Sequential Monte Carlo (SMC) methods, to assess the convenience of a resampling step. From
another perspective, the expressionESS is related to the Euclidean distance between the probability mass
described by the normalized weights and the discrete uniform probability mass function (pmf). In this
work, we derive other possible ESS functions based on different discrepancy measures between these
two pmfs. Several examples are provided involving, for instance, the geometric mean of the weights, the
discrete entropy (including the perplexity measure, already proposed in literature) and the Gini coeffi-
cient among others. We list five theoretical requirements which a generic ESS function should satisfy,
allowing us to classify different ESS measures. We also compare the most promising ones by means of
numerical simulations.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Sequential Monte Carlo (SMC) methods (a.k.a., particle filtering
algorithms) are important tools for Bayesian inference [10], ex-
tensively applied in signal processing [9,17,29,26] and statistics
[11,30,35]. A key point for the success of a SMC method is the use
of resampling procedures, applied for avoiding the degeneracy of
the importance weights [9,11]. However, the application of re-
sampling yields loss of diversity in the population of particles and
entails an additional computational cost [9,12,6, p. 21]. Further-
more, resampling limits the parallel implementation of the filter
(since it needs the information of all the weights at a specific
iteration). Hence, one would desire to perform resampling steps
parsimoniously, only when it is strictly required [12, pp. 13 and
15]. This adaptive implementation of the resampling procedure
needs the use of the concept of Effective Sample Size (ESS) of a set
of weighted samples [9,23,35].

The ESS is a measure of the efficiency of different Monte Carlo
methods, such as Markov Chain Monte Carlo (MCMC) and Im-
portance Sampling (IS) techniques [4,15,23,35,25,27]. ESS is theo-
retically defined as the equivalent number of independent samples
generated directly from the target distribution, which yields the
same efficiency in the estimation obtained by the MCMC or IS
algorithms. Thus, a possible mathematical definition [15,21] con-
siders the ESS as a function proportional to the ratio between the
variance of the ideal Monte Carlo estimator (drawing samples di-
rectly from the target) over the variance of the estimator obtained
by MCMC or IS techniques, using the same number of samples in
both estimators.

The most common choice to approximate this theoretical ESS
definition in IS is the formula =

∑ ¯=

ESS
w

1

n
N

n1
2 , which involves (only)

the normalized importance weights w̄n, = …n N1, , [9,11,35,22].
This expression is obtained by several approximations of the initial
theoretical definition so that, ESS provides an accurate estimation
of the ESS values (given by the theoretical definition) only in
specific cases. For this reason other ESS expressions have also been
proposed, e.g., the perplexity, involving the discrete entropy of the
weights [7] has been suggested in [2]; see also [35, Chapter 4], [12,
Section 3.5], [18]. The discrete entropy has also been considered in
order to design criteria for adaptive resampling schemes in [32,
Section 2.3], [31]. More recently, other alternative formulas ESS
have also been analyzed in [18]. In [37], a conditionalESS formula is
introduced in order to study similarities between successive pdf's
within a sequence of densities.

However, the ESS approximation =
∑ ¯=

ESS
w

1

n
N

n1
2 is widely used in
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practice, and it generally provides good performance. Further-
more, several theoretical studies related to ESS can be found in
literature (e.g., see [1,36,32,31]). It is possible to show that ESS is
also related to the discrepancy between the probability mass
function (pmf) defined by the normalized weights w̄n, = …n N1, , ,
and the uniform pmf { … } N1, 2, , . When the pmf defined by w̄n

is close to the uniform pmf { … } N1, 2, , ,ESS provides high values
otherwise, when the pmf defined by w̄n is concentrated mainly in
one weight, ESS provides small values. More specifically, we show
that ESS is related to the Euclidean distance between these two
pmfs.

It is possible to obtain other ESS functions based on different
discrepancy measures, as we show in this work. We describe and
discuss five requirements, three strictly needed and two welcome
conditions, that a Generalized ESS (G-ESS) function should satisfy.
Several examples, involving for instance the geometric mean,
discrete entropy [7] and the Gini coefficient [16,24] of the nor-
malized weights, are presented. Additionally, four families of
proper G-ESS functions are designed. We classify the novel G-ESS
functions (including also the perplexity measure [2,35]) according
to the conditions fulfilled. We focus on the G-ESS functions which
satisfy all the desirable conditions and compare them by means of
numerical simulations. This analysis shows that different G-ESS
expressions present interesting features from a theoretical and
practical point of view and it can be considered valid alternatives
of the standard formula

∑ ¯= w

1

n
N

n1
2
.

The rest of the paper is organized as follows. Section 2 recalls
the required background material. in Section 3, we highlight that
the standard formula =

∑ ¯=

ess
w

1

n
n

n1
2 is related to the euclidean dis-

tance between two pmfs. The definition of a generalized ess
function is given in Section 4, and novel ess families are in-
troduced in Section 5. Section 6 provides several numerical si-
mulations. Finally, Section 7 contains some brief conclusions.
3 In a standard resampling procedure [12,6], the indices of the particles em-
2. Effective sample size for importance sampling

Let us denote the target pdf as π π¯( ) ∝ ( )x x (known up to a
normalizing constant) with ∈ x . Moreover, we consider the
following integral involving π̄( )x and a square-integrable (w.r.t. π̄)
function ( )h x ,

∫ π= ( ) ¯( ) ( )
I h dx x x, 1

that we desire to approximate using a Monte Carlo approach. If we
are able to draw N independent samples …x x, , N1 from π̄( )x , then
the Monte Carlo estimator of I is

∑= ( ) ≈
( )

̂
=

I
N

h Ix
1

,
2n

N

n
1

where π∼ ¯( )x xn , with = …n N1, , . However, in general, generating
samples directly from the target, π̄( )x , is impossible. Alternatively,
we can draw N samples …x x, , N1 from a simpler proposal pdf ( )q x , 2

and then assign a weight = π( )
( )wn q
x
x

n

n
, = …n N1, , , to each sample,

according to the importance sampling (IS) approach. Defining the
normalized weights,

¯ =
∑

= …
( )=

w
w

w
n N, 1, , ,

3
n

n

i
N

i1

then the IS estimator is
2 We assume that ( ) >q x 0 for all x where π̄( ) ≠x 0, and ( )q x has heavier tails
than π̄( )x .
∑= ¯ ( ) ≈
( )

∼

=

I w h Ix ,
4n

N

n n
1

with ∼ ( )qx xn , = …n N1, , . In general, the estimator
∼
I is less ef-

ficient than ̂I , since the samples are not directly generate by π̄( )x . In
several applications [9,11,17,26], it is necessary to measure in some
way the efficiency that we lose using

∼
I instead of ̂I . The idea is to

define the Effective Sample Size (ESS) as ratio of the variances of the
estimators [21],

=
[ ]
[ ] ( )
∼
̂

πESS N
I

I

var

var
.

5q

Remark. The ESS value in (5) can be interpreted as the number of
independent samples drawn directly from the target π̄ required in
order to obtain an estimator ̂I with a variance equal to [ ]∼

Ivarq .

Namely, ESS represents the number of samples from π̄ required to
obtain a Monte Carlo estimator ̂I with the same efficiency of the IS
estimator

∼
I (considering q as proposal). Heuristically speaking, we

can assert that ESS measures how many independent identically
distributed (i.i.d.) samples, drawn from π̄ , are equivalent to the N
weighted samples, draw from q and weighted according to the

ratio π( )
( )q
x
x

[5, Section 3].

Finding a useful expression of ESS derived analytically from the
theoretical definition above is not straightforward. Different deri-
vations, [21, 22, 11, Chapter 11; 35, Chapter 4] proceed using
several approximations and assumptions for yielding an expres-
sion useful from a practical point of view. A well-known ESS ap-
proximation, widely used in the literature [11,23,35], is

( )
=

∑ ¯
=

∑

∑
≜ ( ¯ )

( )=

=

=

( )  ESS
w

ESS
w

w
ESS P w

1
, , ,

6i
N

n

i
N

n

i
N

n
N

1
2

1

2

1
2

2

where we have used the normalized weights ¯ = [ ¯ … ¯ ]w ww , , N1 in
the first equality, and the unnormalized ones in the second
equality. The reason of using the notation ( ¯ )( )P wN

2 will appear clear
later (the subindex N denotes the number of weights involved, and
the reason of the super-index will be clarified in Section 5). An
interesting property of the expression (6) is that

≤ ( ¯ ) ≤ ( )( )P Nw1 . 7N
2

3. ( )PN
2 as a discrepancy measure

Although, in the literature, ( ¯ )( )P wN
2 is often considered a suitable

approximation of the theoretical ESS definition, the derivation of
( )PN
2 [21,34,35,5, Section 3] contains several approximations and

strong assumptions. As a consequence, ( )PN
2 differs substantially

from the original definition = [ ]

[ ]
∼
̂πESS N I

I

var

varq
in many scenarios (e.g.,

see the numerical results in Section 6.2). In Appendix A, we list the
approximations needed in the derivation of ( )PN

2 and we also dis-
cuss its limitations.

Despite the previous consideration, the expression ( ¯ )( )P wN
2 is

widely used in the adaptive resampling context [9,12, 6, p. 21]
within population Monte Carlo and particle filtering schemes
[3,11,14,17,26].3 For this reason, several theoretical studies about
ployed at the next generation are drawn according to a multinomial distribution

defined by the normalized weights ¯ =
∑ =

wn
wn

i
N wi1

, with = …n N1, , . In order to

perform resampling steps adaptively, i.e., only in certain specific iterations, the
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( )PN
2 can also be found in literature [1,36,32,31], showing that ( )PN

2

has good theoretical properties (e.g., monitoring ( )PN
2 is enough to

prevent the particle system to collapse [1,31,32]).
We believe that one of the reasons of the success of ( )PN

2 in
adaptive resampling is due to its connection with the discrepancy
between two pmfs: the pmf defined by the weights
¯ = [ ¯ … ¯ ]w ww , , N1 and the discrete uniform pmf defined by

¯ = …⁎ ⎡⎣ ⎤⎦w , ,
N N
1 1 . Roughly speaking, if the vector w̄ is reasonably

close to ¯ ⁎w , then the resampling is considered unnecessary.
Otherwise, the resampling is applied. More precisely, we can show
that ( )PN

2 is related to the Euclidean distance L2 between these two
pmfs, i.e.,

∑

∑ ∑

∑

∥ ¯ − ¯ ∥ = ¯ −

= ¯ + − ¯

= ¯ − =
( ¯ )

−
( )

⁎

=

= =

=
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

w
N

w N
N N

w

w
N P N

w w

w

1

1 2

1 1 1
.

8

n

N

n

n

N

n
n

N

n

n

N

n
N

2
1

2

1

2
2

1

1

2
2

Hence, maximizing ( )PN
2 is equivalent to minimizing the Euclidean

distance ∥ ¯ − ¯ ∥⁎w w 2. Thus, it appears natural to consider the
possibility of using other discrepancy measures between these
pmfs, in order to derive alternative ESS functions. In Appendix C,
we show other possible ESS expressions induced by non-Euclidean
distances. In the following, we define a generic ESS function
through the introduction of five conditions (three of them strictly
required, and two welcome conditions), and then we provide
several examples.
Table 1
Classification of G-ESS depending of the satisfied conditions.
4. Generalized ESS functions

In this section, we introduce some properties that a Generalized
ESS (G-ESS) function, based only on the information of the nor-
malized weights, should satisfy. Here, first of all, note that any
possible G-ESS is a function of the vector of normalized weights
¯ = [ ¯ … ¯ ]w ww , , N1 ,

( ¯ ) = ( ¯ … ¯ ) → [ ] ( )E E w w Nw , , : 1, , 9N N N N1

where ⊂ N
N represents the unit simplex in N . Namely, the

variables ¯ … ¯w w, , N1 are subjected to the constraint

¯ + ¯ + ⋯ + ¯ = ( )w w w 1. 10N1 2

4.1. Conditions for the G-ESS functions

Below we list five conditions that ( ¯ )E wN should fulfill to be
consider a suitable G-ESS function. The first three properties are
strictly necessary, whereas the last two are welcome conditions,
i.e., no strictly required but desirable (see also classification
below):

1. Symmetry: EN must be invariant under any permutation of the
weights, i.e.,
(footnote continued)
common practice is to estimate the ESS, using typically the approximation

= ( )ESS PN
2 . Afterwards, the approximated value ESS is compared with pre-estab-

lished threshold ϵN , with ϵ ∈ [ ]0, 1 [11,12,6]; if ≤ ϵESS N , then the resampling is
applied.
( ¯ ¯ … ¯ ) = ( ¯ ¯ … ¯ ) ( )E w w w E w w w, , , , , , , 11N N N j j j1 2 N1 2

for any possible set of indices { … } = { … }j j N, , 1, ,N1 .
2. Maximum condition: A maximum value is N and it is reached at

¯ =⁎ ⎡⎣ ⎤⎦w , . . . ,
N N
1 1 (see Eq. (B.1)), i.e.,

( )¯ = ≥ ( ¯ ) ( )⁎E N Ew w . 12N N

3. Minimum condition: the minimum value is 1 and it is reached (at

least) at the vertices

⏟
¯ =( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥w 0, 0, , . . . . , 1 , . . . , 0j

j

of the unit

simplex in Eq. (B.2),

( ¯ ) = ≤ ( ¯ ) ( )( )E Ew w1 . 13N
j

N

for all ∈ { … }j N1, , .
4. Unicity of extreme values: (welcome condition) The maximum at

¯ ⁎w is unique and the minimum value 1 is reached only at the
vertices ¯ ( )w j , for all ∈ { … }j N1, , .

5. Stability—invariance of the rate ( ¯ )E w
N

N : (welcome condition) Con-
sider the vector of weights ¯ = [ ¯ … ¯ ] ∈ w ww , , N

N
1 and the vector

¯ = [ ¯ … ¯ ] ∈ ≥ ( )v v Mv , , , 1, 14MN
MN

1

obtained repeating and scaling by
M
1 the entries of w̄ , i.e.,

¯ = [ ¯ ¯ … ¯ ]
( )−

  M
v w w w

1
, , , .

15M times

Note that, clearly, ∑ ¯ = ∑ ¯ == =
⎡⎣ ⎤⎦v M w 1i

mN
i M n

N
n1

1
1 . The invariance

condition is expressed as

( ¯ )
=

(¯ )
( ¯ ) = (¯ ) ( )

E
N

E
MN

E
M

E
w v

w v
1

, 16
N MN

N MN

for all ∈ +M .

The condition C5 is related to the optimistic approach described
in Appendix B. For clarifying this point, as an example, let us
consider the vectors

¯ = [ ] ¯ ′ = = [ ¯ ¯ ] ¯″

= = [ ¯ ¯ ¯ ]

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

w v w w v

w w w

0, 1, 0 , 0, , 0, 0, , 0
1
2

, ,

0, , 0, 0, , 0, 0, , 0 , , ,

1
2

1
2

1
3

1
3

1
3

1
3

with N¼3. Following the optimistic approach, we should have
( ¯ ) =E w 1N , ( ¯ ′) =E v 2N2 and ( ¯ ″) =E v 3N3 , i.e., the rate E N/N is invariant

( ¯ )
=

(¯ ′)
=

(¯″)
=

E
N

E
N

E
N

w v v
2 3

1
3

.N N N2 3

4.2. Classification of G-ESS functions

We divide the possible G-ESS functions in different categories
depending on the conditions fulfilled by the corresponding func-
tion (see Table 1). Recall that the first three conditions are strictly
required. All the G-ESS functions which satisfy at least the first
four conditions, i.e., from C1 to C4, are proper functions. All the
Class of G-ESS C1 C2 C3 C4 C5

Degenerate (D) Yes Yes Yes No No
Proper (P) Yes Yes Yes Yes No
Degenerate and Stable (DS) Yes Yes Yes No Yes
Proper and Stable (PS) Yes Yes Yes Yes Yes



Table 2
G-ESS families and their coefficients ar and br.

( ¯ )( )P wN
r ( ¯ )( )D wN

r ( ¯ )( )V wN
r ( ¯ )( )S wN

r

( )∑ ¯ +=a w b

1

r n
N

n
r

r1 ( )∑ ¯ +=
⎡⎣ ⎤⎦a w b

1

r n
N

n
r r

r1

1
( )∑ ¯ +=a w br n

N
n

r
r1 ( )∑ ¯ +=

⎡⎣ ⎤⎦a w br n
N

n
r r

r1

1

= −
−( − )a
N

N N

1
r r2

= −

−
a

N

N N

1
r

r
1 = ( − )

−

−

−a
N N

N

1

1
r

r

r

1

1
= −

−
−a

N

N

1

1
r r

r
1

= −
−

( − )

( − )b
N

N N

1
r

r

r

2

2 = −

−
b

N

N N

1
r

r

r

1

1
= −

−−b
N

N

1

1
r

r

r 1 = −

−

−

−b
N N

N 1
r

r
r

r
r

1

1

Table 3

Special cases of the families ( ¯ )( )P wN
r , ( ¯ )( )S wN

r , ( ¯ )( )D wN
r and ( ¯ )( )V wN

r .

Parameter: →r 0 →r 1 =r 2 → ∞r

( ¯ )( )P wN
r

+
N

N 1Z

− ( )
− ( ) + ( − ) ( ¯ )

N N

N N N H w

log

log 1
2

2 ( )∑ ¯= w

1

n
N

n1
2

¯ ≠ ¯

¯ = ¯

( )

( )

⎪
⎪

⎧
⎨
⎩

N w w

w w

, if ,

1, if .

i

i

Degenerate (type-1) Proper Proper-Stable Degenerate (type-1)

Parameter: →r 0 =r
1
2

→r 1 → ∞r

( ¯ )( )S wN
r ( − ) ( ¯ ) +N N wGeoM 12 ( )∑ ¯= wn

N
n1

2 −
( )

( ¯ ) +N
N

H w
1

log
1

2

+ − [ ¯ … ¯ ]N N w w1 max , , N1

Degenerate (type-2) Proper-Stable Proper Proper

Parameter: →r 0 →r 1 → ∞r

( ¯ )( )D wN
r

( − ) ( ¯ ) +N w
1

1 GeoM 1
− ( )

− ( ) + ( − ) ( ¯ )
N N

N N N H w

log

log 1
2

2
[ ¯ … ¯ ]w w

1
max , , N1

Degenerate (type-2) Proper Proper-Stable

Parameter: →r 0 →r 1 → ∞r

( ¯ )( )V wN
r −N NZ −

( )
( ¯ ) +N

N
H w

1
log

1
2

¯ ≠ ¯

¯ = ¯

( )

( )

⎪
⎪

⎧
⎨
⎩

N w w

w w

, if ,

1, if .

i

i

Degenerate (type-1)-Stable Proper Degenerate (type-1)

Table 4
Stable G-ESS functions.

( ¯ )(∞)D wN ( ¯ )( )P wN
2

( ¯ )
( )

S wN

1
2 ( ¯ )( )V wN

0

[ ¯ … ¯ ]w w
1

max , , N1 ∑ ¯= w

1

n
N

n1
2 ( )∑ ¯= wn

N
n1

2 −N NZ

proper proper proper degenerate (type-1)

( ¯ )Q wN − ( ¯ )wN plusN ( ¯ )wGiniN ( ¯ )wPerN

− ∑ ¯ + +=
+ + +N w N Ni

N
i1

+N − ( ¯ ) +NG Nw ( ¯ )2H w

proper degenerate (type-2) proper proper
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G-ESS functions which satisfy the first three conditions, C1, C2 and
C3 but not C4, are considered degenerate functions. When a G-ESS
function fulfills the last condition is called stable. Thus, the G-ESS
functions which satisfy all the conditions, i.e., from C1 to C5, are
then proper and stable whereas, if C4 is not satisfied, they are de-
generate and stable. We can also distinguish two type of degen-
eracy: type-1 when ( ¯ )E wN reaches the maximum value N also in
some other point ¯ ≠ ¯ ⁎w w , or type-2 if ( ¯ )E wN reaches the minimum
value 1 also in some point that is not a vertex.
5. G-ESS families and further examples

We can easily design G-ESS functions fulfilling at least the first
three conditions, C1, C2, and C3. As examples, considering a
parameter ≥r 0, we introduce four families of G-ESS functions
which have the following analytic forms

( )

( )

( )

( )

∑

∑

( ¯ ) =
∑ ¯ +

∈

( ¯ ) =
∑ ¯ +
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=
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⎡
⎣
⎢
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⎤
⎦
⎥
⎥
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

P
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D
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r

V a w b r

S a w b r

w

w

w

w

1
, ,

1
, 0,

, ,

, 0,

N
r

r n
N

n
r

r

N
r

r n
N

n
r r

r

N
r

r
n

N

n
r

r

N
r

r
n

N

n
r

r

r

1

1

1

1

1

1



Fig. 1. (a) G-ESS functions, (∞)D2 (squares), ( )P2
2 in Eq. (6) (circles), and T2,2 in Eq. (26) (dashed lines), all of themwith N¼2 (then, ¯ = − ¯w w12 1). We can see that (∞)D2 has a sub-

linear increase to the value N¼2, whereas ( )P2
2 a super-linear increase. (b)-(c)-(d) pdf's pN(e) associated to (∞)D2 , ( )P2

2 and T2,2, respectively. For
(∞)D2 (Fig. 1(b)) more probability

mass is located close to 1, whereas for ( )P2
2 (Fig. 1(d)), ( )p e2 is unbalanced to the right side close to 2.
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where ar and br are constant values depending on the parameter r
(and the corresponding family). The values of the coefficients ar
and br can be found easily as solutions of linear systems (see Ap-
pendix D), with equations obtained in order to fulfill the condi-
tions C2 and C3. The resulting G-ESS functions are in general
proper, i.e., satisfying from C1 to C4 (with some degenerate and
stable exceptions). The solutions of the corresponding linear
systems are given in Table 2. Replacing these solutions within the
expressions of the different families, we obtain
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These families contain different G-ESS functions previously in-
troduced, and also other interesting special cases. Table 3 sum-
marizes these particular cases (jointly with the corresponding
classification) corresponding to specific values the parameter r.
Some of them ( ( )DN

0 and ( )SN
0 ) involve the geometric mean of the

normalized weights,

∏( ¯ ) = ¯
( )=

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥wwGeoM ,

21n

N

n

N

1

1/

other ones ( =( ) ( )D PN N
1 1 and =( ) ( )S VN N

1 1 ) involve the discrete entropy
[7] of the normalized weights,

∑( ¯ ) = − ¯ ( ¯ )
( )=

H w ww log ,
22n

N

n n
1

2

and others use the number of zeros contained in w̄ ,
=#{ ¯ = ∀ = … }N w n N0, 1, ,Z n . The derivations of these special

cases are provided in Appendices D.1 and D.2. Note that Table 3
contains a proper and stable G-ESS function



Fig. 2. The histograms of the rates ESS
N

corresponding to the proper and stable G-ESS functions in Table 4, with ∈ { }N 50, 1000 .

Table 5
Statistics of ( )p eN , empirical approximation of pN(e), corresponding to different G-ESS functions. The greatest standard deviations for a given N are highlighted with boldface.

Description N (∞)D N/N
( )P N/N
2 ( )

SN

1
2

N/ Q N/N Gini N/N Per N/N

Mean 50 0.2356 0.5194 0.7902 0.6371 0.5117 0.6655
200 0.1776 0.5057 0.7868 0.6326 0.5020 0.6568
103 0.1366 0.5013 0.7858 0.6324 0.5007 0.6558

5 103 0.1121 0.5005 0.7856 0.6322 0.5002 0.6554

Std 50 0.0517 0.0622 0.0324 0.0345 0.0410 0.0492
200 0.0336 0.0341 0.0168 0.0171 0.0204 0.0248
103 0.0213 0.0158 0.0077 0.0077 0.0091 0.0111

5 103 0.0145 0.0071 0.0034 0.0034 0.0040 0.0050

L. Martino et al. / Signal Processing 131 (2017) 386–401 391
∑( ¯ ) = ¯
( )

( )

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S ww ,

23
N

n

N

n
1/2

1

2

not introduced so far. Other examples of G-ESS functions, which
do not belong to these families, are given below.

Example 1. The following function

∑( ¯ ) = − ¯ + +
( )=

+ +
+

Q N w N Nw ,
24

N
i

N

i
1

with
{ }{ ¯ … ¯ } = ¯ ¯ ≥ ∀ = …+ +
+w w w w N n N, , all : 1/ , 1, , ,

N n n1

and =#{ ¯ … ¯ }+ + +
+N w w, ,

N1 , is proper and stable. It is related to the L1
distance between w̄ and ¯ ⁎w as shown in Appendix C.

Example 2. The following functions involving the minimum of the
normalized weights,

( ¯ ) =
( − ) [ ¯ … ¯ ] + ( )

T
N w w

w
1

1 min , , 1
,

25N
N

1,
1



Fig. 3. ESS rates corresponding to ESSvar(h) (solid line), ESSMSE(h) (dashed line; shown only in (a)-(c)), ( )PN
2 (circles), (∞)DN (squares), GiniN (stars), ( )SN

1/2 (triangles up), QN (x-
marks), PerN (triangles down).
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( ¯ ) = ( − ) [ ¯ … ¯ ] + ( )T N N w ww min , , 1, 26N N2,
2

1

are degenerate (type-2) G-ESS measures.

Example 3. The perplexity function introduced in [2] and also
contained in a ESS family studied in [18, pp. 13 and 22] is defined
as

( ¯ ) = ( )( ¯ )wPer 2 , 27N
H w

where

∑( ¯ ) = − ¯ ( ¯ )
( )=

H w ww log ,
28n

N

n n
1

2

is the discrete entropy [7] of the pmf w̄n, = …n N1, , . The per-
plexity is a proper and stable G-ESS function.

Example 4. Let us consider the Gini coefficient ( ¯ )G w [16,24], de-
fined as follows. First of all, we define the non-decreasing se-
quence of normalized weights
¯ ≤ ¯ ≤ … ≤ ¯ ( )( ) ( ) ( )w w w , 29N1 2

obtained by sorting in ascending order the entries of the vector w̄.
The Gini coefficient is defined as

( ¯ ) = ( ¯ ) − +
( )G

s
N

N
N

w
w

2
1

, 30

where

∑( ¯ ) = ¯
( )=

( )s nww .
31n

N

n
1

Then, the G-ESS function defined as

( ¯ ) = − ( ¯ ) + ( )NG Nw wGini , 32N

is proper and stable.

Example 5. The following G-ESS function (inspired by the L1
distance),

{ }− ( ¯ ) = =# ¯ ≥ ∀ = … ( )
+N w N n NwN plus 1/ , 1, , . 33N n



Fig. 4. [Setting S3] ESS rates as function of N, corresponding to the theoretical ESS, i.e., ESSvar(h) (solid line), and the G-ESS functions: ( )PN
2 (circles), (∞)DN (squares), GiniN

(stars), ( )SN
1/2 (triangles up), QN (x-marks), PerN (triangles down).
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is also degenerate (type 2) and stable.

5.1. Summary

In the previous sections, we have found different stable G-ESS
functions, satisfying at least the conditions C1, C2, C3, and C5. They
are recalled in Table 4. The following ordering inequalities

( )( ¯ ) ≤ ( ¯ ) ≤ ( ¯ ) ≤ ( ¯ ) ∀ ¯ ∈(∞) ( ) ( ) D P S Vw w w w w, ,N N N N N
2

1
2 0

can also be easily proved.

5.2. Distribution of the ESS values

An additional feature of the G-ESS measures is related to the
distribution of the effective sample size values obtained with a
specific G-ESS function, when the vector w̄ is considered as a
realization of a random variable uniformly distributed in the unit
simplex N . Namely, let us consider the random variables
¯ ∼ ( ) W N and ( )= ¯E E WN with probability density function (pdf)
pN(e), i.e.,

∼ ( ) ( )E p e . 34N

Clearly, the support of pN(e) is [ ]N1, . Studying pN(e), we can define
additional properties for discriminating different G-ESS functions.
For instance, in general pN(e) is not a uniform pdf. Some functions
EN concentrate more probability mass closer to the maximum N,
other functions closer to the minimum 1. This feature varies with
N, in general. For N¼2, it is straightforward to obtain the ex-
pression of the pdf ( )p e2 for certain G-ESS functions. Indeed, de-
noting as ( )I e1 and ( )I e2 the inverse functions corresponding to the
monotonic pieces of the generic function ( )¯ − ¯ = ( ¯ )E w w E w, 12 1 1 2 1 ,
then we obtain

( ) = + ∈ [ ]
( )

p e
dI
de

dI
de

e N, 1, ,
352

1 2

using the expression of transformation of a uniform random

variable, defined in [ ]0, 1 . Thus, we find that ( ) =p e
e2
2
2 for (∞)D2 and



Fig. 5. [Setting S4] ESS rates corresponding to the theoretical definitions ESSvar(h) (solid line), −A ESS (solid line with rhombuses), and the G-ESS functions ( )PN
2 (circles), (∞)DN

(squares), GiniN (stars).
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( ) =
−

p e
e

2
2

1
e

2 2
for ( )P2

2 , for instance. Fig. 1 depicts the pdf's ( )p e2 for

(∞)D2 , T2,2 in Eq. (26) and ( )P2
2 in Eq. (6). We can observe that ( )P2

2 is

more optimistic than (∞)D2 judging a set of weighted samples and
assigning a value of the effective size, since ( )p e2 in this case is
unbalanced to the right side close to 2. From a practical point of
view, the pdf pN(e) could be used for choosing the threshold values
for the adaptive resampling. The limiting distribution obtained for

→ ∞N ,

( ) = ( ) ( )∞ →∞
p e p elim , 36N N

is also theoretically interesting, since it can characterize the
function EN. However, it is not straightforward to obtain ( )∞p e
analytically. In Section 6, we approximate different limiting pdf's

( )∞p e of different G-ESS functions via numerical simulation.
6. Simulations

6.1. Analysis of the distribution of ESS values

In this section, we study the distribution pN(e) of the values of
the different G-ESS families. With this purpose, we draw different
vectors ¯ ′w uniformly distributed in the unit simplex N , and then
we compute the corresponding ESS values (e.g., using the proce-
dure described in [8]). We generate 2000 independent random
vectors ¯ ′w uniformly distributed in the unit simplex ⊂ N

N . After
that we evaluate the different proper and stable G-ESS functions
(summarized in Table 4) at each drawn vector ¯ ′w . The resulting
histograms of the rate ESS/N obtained by the different functions
are depicted in Fig. 2. Figs. 2(a)–(c) correspond to N¼50, whereas
(b)–(d) correspond to N¼1000. Figs. 2(a)–(c) show the histograms

of the rate corresponding (∞)DN , ( )PN
2 ,

( )
SN

1
2 , whereas Figs. 2(b)–

(d) show the histograms of the rate corresponding QN, GiniN and
PerN . The empirical means and standard deviations for different N
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Fig. 6. (a) Resampling Rate R as function of ϵ = ϵ = ϵ1 2 for ( )PN
2 (solid line) and (∞)DN (dashed line). (b) Mean Square Error (MSE) as function of the resampling Rate R for ( )PN

2

(solid line) and (∞)DN (dashed line), in log-log-scale (N¼1000 and T¼3000).
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are provided in Table 5.
We can observe that all the G-ESS functions concentrate the

probability mass of the ESS values around one mode, located in
different positions. The variances of these distributions decrease as
N grows. The statistical information provided by these histograms
can be used for choosing the threshold value in an adaptive re-
sampling scheme. Typically, the condition for applying resampling
is

( ¯ ) ≤ ϵE Nw ,N

where ≤ ϵ ≤0 1. Namely, the information provided by Table 5 can
be useful for choosing ϵ, depending on the used G-ESS function.
For instance, Doucet et al. [12, Section 3.5] suggest us to use ϵ = 1

2

for ( )PN
2 . This suggestion can be explained considering the mean of

the ESS values of ( )PN
2 , which is ≈0.5. Moreover, the standard de-

viation can help us to understand the capability of each formula in
differentiating different vectors w̄ . The greatest standard deviation
for each N is highlighted with boldface. In this sense, (∞)DN seems
the most “discriminative” for large values of N, whereas ( )PN

2 seems
the more convenient for small values of N (however, other studies
can suggest the opposite; see below).

6.2. Approximation of the theoretical ESS definition

Let us recall the theoretical definition of ESS in Eq. (5),

( ) =
[ ( )]
[ ( )] ( )
∼
̂

πESS h N
I h

I h

var

var
,

37
var

q

where we stress the dependence on the choice of the integrand
function h. As also discussed in Appendix A, a more convenient
definition for small values of N is

( ) =
[ ( )]
[ ( )]

=
[ ( )]
[ ( )] ( )

∼ ∼
̂ ̂

π πESS h N
I h

I h
N

I h

I h

MSE

MSE

var

MSE
.

38
MSE

q q

considering the Mean Square Error (MSE) of the estimators, in-
stead of only the variance. For large values of N the difference
between the two definitions is negligible since the bias of

∼
I is

virtually zero. In this section, we compute approximately via
Monte Carlo the theoretical definitions ESSvar(h), ESSMSE(h), and
compare with the values obtained with different G-ESS functions.
More specifically, we consider a univariate standard Gaussian
density as target pdf,
π̄( ) = ( ) ( )x x; 0, 1 , 39

and also a Gaussian proposal pdf,

μ σ( ) = ( ) ( )q x x; , , 40p p
2

with mean μp and variance sp
2. Furthermore, we consider different

experiment settings:

1 In this scenario, we set σ = 1p and vary μ ∈ [ ]0, 2p . Clearly, for
μ = 0p we have the ideal Monte Carlo case, π( ) ≡ ¯( )q x x . As μp

increases, the proposal becomes more different from π̄ . We
consider the estimation of the expected value of the random
variable π∼ ¯( )X x , i.e., we set ( ) =h x x in the integral of Eq. (1).

2 In this case, we set μ = 1p and consider σ ∈ [ ]0.23, 4p . We set
( ) =h x x.

3 We fix σ = 1p and μ ∈ { }0.3, 0.5, 1, 1.5p and vary the number of
samples N. We consider again ( ) =h x x.

4 In order to analyze the dependence on the choice of h(x) of the
theoretical definition (37) and of the numerical results, we
consider ( ) =h x xr

r , = … =r R1, , 10. More specifically, we define
the averaged ESS (A-ESS) value,

∑− = ( )
( )=

A ESS
R

ESS h
1

,
41r

R

var r
1

where ( )ESS hvar r is given in Eq. (37). First, we set σ = 1p ,
∈ { }N 1000, 5000 , and vary μ ∈ [ ]0, 2p , as in the setting S1, but

we also compute A-ESS in Eq. (41). Then, we set σ = 1p ,
μ = { }0.3, 1p , and vary N, similarly as S3.

In the first two cases, we test ∈ { }N 5, 1000 . Fig. 3 shows the
theoretical ESS curves (approximated via simulations) and the
curves corresponding to the proper and stable G-ESS formulas
(averaged over 105 independent runs), for the experiment settings
S1 and S2. For N¼1000, the difference between ESSvar(h) and
ESSMSE(h) is negligible, so that we only show ESSvar(h). For N¼5
and S1 we show both curves of ESSvar(h) and ESSMSE(h), whereas
for N¼5 and S2 we only provide ESSMSE(h) since the bias is big for
small value of sp so that it is difficult to obtain reasonable and
meaningful values of ESSvar(h). Figs. 4 and 5 provide the results of
the experiment setting S3 and S4, respectively. Note that, for
simplicity, in Fig. 5 we only show the results of (∞)DN , ( )PN

2 and GiniN ,
jointly with the theoretical ones, ESSvar(h) and A-ESS.

In the setting S1 with N¼5 shown Fig. 3(a), first of all we
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observe that ESSvar(h) and ESSMSE(h) are very close when μ ≈ 0p

(i.e., π( ) ≈ ¯( )q x h ) but they differ substantially when the bias in-
creases. In this case, the G-ESS function GiniN provides the closest
values to ESSvar(h), in general. Moreover, ( )PN

2 and (∞)DN also provide
good approximations of ESSvar(h). Note that ESSvar(h) is always
contained between (∞)DN and ( )PN

2 . In the case S1 with N¼1000
shown Fig. 3(b), the formula ( )PN

2 provides the closest curve to
ESSvar(h). The G-ESS function (∞)DN gives a good approximation
when μp increases, i.e., the scenario becomes worse from a Monte
Carlo point of view. The G-ESS function GiniN provides the best
approximation when μ ∈ [ ]0, 0.5p . Again, ESSvar(h) is always con-

tained between (∞)DN and ( )PN
2 .

In the second scenario S2 with N¼5 shown Fig. 3(c), all G-ESS
functions are not able to reproduce conveniently the shape of
ESSMSE(h). Around to the optimal value of sp, GiniN and ( )PN

2 provide
the best approximation of ESSMSE(h). For the rest of value of sp, (∞)DN
provides the closest results. In the second setting S2 with N¼1000
shown Fig. 3(d), ( )PN

2 seems to emulate better the evolution of
ESSvar(h). However, (∞)DN provides the closest results for small va-
lues of sp.

In the experiment setting S3 (see Fig. 4), we observe that the
behavior of the different G-ESS functions as N grows. When
μ = 0.3p and μ = 0.5p , the function ( ¯ )wGiniN provides the best ap-
proximation of the theoretical definition, i.e., ESSvar(h). In parti-
cular, with μ = 0.3p , ( ¯ )wGiniN seems to approximate precisely the
evolution of ESSvar(h). As the proposal differs more to the shape of
the target, i.e., for μ = 1p and μ = 1.5p , ( ¯ )(∞)D wN becomes the best

option. With μ = 1.5p , ( ¯ )(∞)D wN reproduces closely the evolution of

ESSvar(h). In these last two cases, μ = 1p and μ = 1.5p , ( ¯ )( )P wN
2 pro-

vides also good performance. We conclude that, in this setup,
when the proposal and the target substantially differ, ( ¯ )(∞)D wN
provides the best results. Roughly speaking, when the shape of
proposal is closer to the shape of target, the function ( ¯ )wGiniN
provides also good results. Moreover, ( ¯ )wGiniN seems to perform
better than ( ¯ )( )P wN

2 when the number of particles N is small. In
intermediate situations, ( ¯ )( )P wN

2 seems to be a good compromise.
Finally, in the last setting S4, we can observe (see Fig. 5) that A-ESS
in Eq. (41) is in general smaller than ESSvar(h) (which considers
only ( ) =h x x). In these experiments, the G-ESS function (∞)DN is the
closest approximation of A-ESS.

6.3. Adaptive resampling in particle filtering

In this example, we apply ( )PN
2 and (∞)DN within a particle filter in

order to decide adaptively when performing a resampling step.
Specifically, we consider a stochastic volatility model where the
hidden state xt follows an AR(1) process and represents the log-
volatility [19] of a financial time series at time ∈ t . The equations
of the model are given by

α= +

=
= …

( )

−

⎜ ⎟

⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠

x x u

y
x

v
t T

,

exp
2

,
1, , .

42

t t t

t
t

t

1

where α = 0.99 is the AR parameter, and ut and vt denote in-
dependent zero-mean Gaussian random variables with variances
σ = 1u

2 and σ = 0.5v
2 , respectively. Note that vt is a multiplicative

noise. For the sake of simplicity, we implement a standard particle
filter (PF) [9,10,17] using as propagation equation of the particles
exactly the AR(1) process, i.e., the particles xi t, 's are propagated as

∼ ( | )−x p x xi t t i t, , 1 , where = …i N1, , is the particle index. We set
T¼3000 and N¼1000 number of particles. The resampling is
performed adaptively, only a certain iterations,

= { … } ( )⁎ ⁎ t t, , , 43r1
where =#r (clearly, r varies in each run). More specifically, de-
noting as ¯ = [ ¯ … ¯ ]w ww , ,t t N t1, , at a specific PF iteration t, the con-
ditions for applying the resampling are

( ¯ ) ≤ ϵ ( ¯ ) ≤ ϵ( ) (∞)P N D Nw w, ,N t N t
2

1 2

respectively, where ϵ ∈ [ ]0, 1i , i¼1,2, are a constant threshold va-
lues (with ϵ = 0i , no resampling is performed; with ϵ = 1i , the
resampling is applied at each iteration).

Let us denote as = { … }⁎ ⁎ t t, , r1 1 1
and τ τ= { … }⁎ ⁎ , , r2 1 2

the set of

resampling instants obtained by ( )PN
2 and (∞)DN , respectively ( =#r1 1

and =#r2 2). Since ( ¯ ) ≥ ( ¯ )(∞) ( )D Pw wN t N t
2 for all ¯ ∈ wt , and if ϵ = ϵ1 2,

using (∞)DN we apply more resampling steps than when ( )PN
2 is used,

i.e., ≥r r2 1 if ϵ = ϵ1 2. However, an equal resampling rate R, i.e., the
ratio of the averaged number of the performed resampling steps
over T,

= # = [ ]
( )

⎡
⎣⎢

⎤
⎦⎥R E

T T
E r

Resampling 1
,

44

can be obtained using different threshold values ϵ1 and ϵ2 for ( )PN
2

and (∞)DN . In our case, for obtaining the same resampling rate we
need that ϵ ≥ ϵ1 2, as shown in Fig. 6(a). Note that ≤ ≤R0 1.

Goal: Given a resampling rate R, our purpose is to discriminate
which G-ESS function, between ( )PN

2 and (∞)DN , selects the better
iteration indices tn's for applying the resampling steps, i.e., when it
is more adequate to apply resampling in order to improve the
performance.

Results: We test 100 different values of ϵ1 and ϵ2 (we have
considered a thin grid of values from 0 to 1 with width 0.01, for
both). For each value of ϵi, i¼1,2, we run 500 independent simu-
lations of the PF for inferring the sequence x t1: , given a sequence of
observations y T1: generated according to the model in Eq. (42).
Hence, we compute the Mean Square Error (MSE) in the estima-
tion of x t1: obtained by the PF, in each run. Moreover, for each
value of ϵi, i¼1,2, we calculate the resampling rate R (averaged
over the 500 runs). Then, we can plot two curves of averaged MSE
versus the resampling rate R, corresponding to ( )PN

2 and (∞)DN . In this
way, we can compare the performance of the PF using the same
resampling rate R but obtained with different G-ESS functions, ( )PN

2

and (∞)DN . The results are shown in Fig. 6(b) in log–log-scale. We
can see that, for a given resampling rate R, the G-ESS function (∞)DN

always provides a smaller MSE w.r.t. ( )PN
2 . This confirms that, at

least in certain scenarios, (∞)DN is a good measure of ESS and it is a
valid alternative for ( )PN

2 . Furthermore, the range of useful values of
ϵ in ( )PN

2 is smaller than in (∞)DN as shown in Fig. 6(a).
7. Conclusions

In this work, we have proposed new classes of alternative ESS
approximations for importance sampling, discussing and testing
them from a theoretical and practical point of view. Indeed the
novel ESS expressions, jointly with other formulas already pre-
sented in the literature, have been classified according to five
theoretical requirements presented in this work. This classification
has allowed to select six different ESS functions which satisfy all
these necessary conditions. Then, we have tested them by nu-
merical simulations. Some of them, such as ( ¯ )(∞)D wN and ( ¯ )wGiniN
present interesting features and some benefit, compared to the
standard ESS formula ( ¯ )( )P wN

2 . When the proposal pdf differs sub-
stantially to the target density, ( ¯ )(∞)D wN provides the best approx-
imations. When the proposal is close to the target, the function

( ¯ )wGiniN provides also good results. Moreover, ( ¯ )wGiniN seems to
perform better than ( ¯ )( )P wN

2 when the number of particles N is
small. In intermediate scenarios, ( ¯ )( )P wN

2 can be also considered a
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good compromise. Furthermore, ( ¯ )(∞)D wN behaves as a “lower
bound” for the theoretical ESS definition, as shown in the nu-
merical simulations. The simulation study also provides some
useful value for choosing the threshold in an adaptive resampling
context. For instance, the results in Table 5 suggest to use of ϵ ≥ 1

2

for ( ¯ )( )P wN
2 (as already noted in [12, Section 3.5]) and ( ¯ )wGiniN , or

ϵ ≥ 0.11 for ( ¯ )(∞)D wN , in the resampling condition ( ) ≤ ϵE NwN . We
have also tested (∞)DN and ( )PN

2 within a particle filter for tracking a
stochastic volatility variable. The application of G-ESS function

(∞)DN has provided smaller MSE in estimation w.r.t. ( )PN
2 , considering

equal resampling rates (i.e., the number of the performed resam-
pling steps over the total number of iterations of the filter).
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Appendix A. Analysis of the theoretical derivation of ( )PN
2

In the following, we summarize the derivation of ( )PN
2 , that can

be partially found in [21] and [23, Section 2.5], stressing the
multiple approximations and assumptions:
1. In Section 2, the ESS has been conceptually defined as the ratio

between the performance of two estimators, the ̂I , where

samples are drawn from the target π̄ , and
∼
I , the self-normalized

IS estimator. The definition = [ ]

[ ]
∼
̂πESS N I

I

var

varq
in Eq. (5) does not take

in account the bias of
∼
I (which can be significant for small N).

Therefore, a more complete definition is

= =
( )

∼ ∼

̂ ̂
π

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ESS N
I

I
N

I

I

MSE

MSE

var

MSE
,

A.1

where we have considered the Mean Square Error (MSE) and we
have taken into account the bias of

∼
I . In [21], the derivation

starts with the definition in Eq. (5) justifying that “the bias is of
the order of N1/ and can be ignored for large N” and that ̂I is
unbiased. Indeed, roughly speaking, the squared bias is typically
of order N�2, which is negligible compared to the variance
which is of order N�1. Nevertheless, ( )PN

2 is employed regardless
the N. Then, the ratio of variances overestimates the theoretical

value = ∼

̂⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ESS N
I

I

MSE

MSE
.

2. In the derivation of [21], all the samples are considered to be i.i.
d. from a single proposal, i.e. ∼ ( )x q xn , for = …n N1, , . Never-

theless, ( )PN
2 is also used in algorithms which employ multiple
Fig. A1. Graphical representation of the loss of statistical information nor
proposal pdf's under many different weighting strategies [13].
3. A first delta method is first applied in order to approximate

[ ]∼
Ivarq in [21, Eq. (6)].

4. The second delta method is applied again to approximate the
expectation [ ( ) ( ) ]π w fx xE 2 in [21, Eq. (9)], where ( ) = π( )

( )w x
q

x
x
.

5. In the whole derivation, the target is assumed to be normalized
(see [21] and [23, Section 2.5]). This is a strong assumption that
very rarely occurs in practical scenarios. If this were not the
case, the normalizing constant would appear in [21, Eqs. (7)–
(9)], and therefore also in [21, Eqs. (11)–(12)]. As a consequence
of the normalized constant assumption, the ESS is approxi-
mated as

≈
+ [ ( )] ( )

ESS
N

w x1 Var
.

A.2q

Since w is the unnormalized weights, different scaled version of
the target would yield different approximation of the ESS. In
order to overcome this problem, it has been proposed (see [35]
and the further explanation in [34]) to modify the approxima-
tion of Eq. (A.2) by

≈
+

[ ( )] =
+

( )

ESS
N

w

Z

N
x

1
var 1 CV

,

A.3
q

2

2

where CV represents the coefficient of variation (also as relative
standard deviation) defined as the ratio of the standard deviation

[ ( )]w xvarq and the mean [ ( )] =E w Zxq [23]. The well-known ( )PN
2

can be derived as an empirical approximation of Eq. (A.3),

≈

+
∑ − ∑

∑
( )

( )

= =

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

P
N

N
w

N
w

N
w

1

1 1

1
A.4

N

n
N

n n
N

n

n
N

n

2

1
2

1

2

1

2

=
∑

∑
( )

( )

=

=
⎛
⎝⎜

⎞
⎠⎟

P
N

N
w

N
w

1

1
A.5

N

n
N

n

n
N

n

2

1
2

1

2

=
∑ ¯ ( )

( )

=

P
w

1
.

A.6
N

n
N

n

2

1
2

Nevertheless, if the target distribution is not assumed to be
normalized, the approximation of Eq. (A.3) is no longer valid. In
other words, the metric ( )PN

2 is approximated with the assumption
of Z¼1 in the whole derivation, except in the last step where the Z
is re-incorporated.

Consequences: One consequence of these approximations is
malizing the weights and ignoring the values of the particles (N¼3).



Fig. B1. Graphical summary of the optimistic approach employed by ( ¯ )( )P wN
2 .
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that, given the values of w̄n's, the final formula ( )PN
2 does not de-

pend directly on the particles xn, = …n N1, , , which is obviously a
drawback since we are trying to measure the effective sample size
of the set of weighted particles (see Fig. A1).4 Moreover, ( )PN

2 is
independent from the function h, whereas the theoretical defini-

tion = [ ]

[ ]
∼
̂πESS N I

I

var

varq
involves h. Finally, the inequalities ≤ ≤( )P N1 N

2

always hold, which can appear an interesting feature after a first
examination, but actually it does not encompass completely the
theoretical consequences included in the general definition

= [ ]

[ ]
∼
̂πESS N I

I

var

varq
. Indeed, by this general definition of ESS, we have

≤ ≤ ≥ESS B B N0 , ,

i.e., namely ESS can be less than 1, when [ ] > > [ ]∼ ̂
πI Ivar varq , and

even greater than N, when [ ] < [ ]∼ ̂
πI Ivar varq : this case occurs when

negative correlation is induced among the generated samples
[13,33]. Fig. A1 shows the progressive loss of information, first
normalizing the weights and then removing the information re-
lated to the position of the particles.
Appendix B. The optimism of ( ¯ )( )P wN
2

Here, we analyze the behavior of ( ¯ )( )P wN
2 in two extreme cases.

If all the samples are drawn directly from the target distribution all
the weights wn are equal, so that ¯ =wn N

1 , = …n N1, , . the vector

with equal components ¯ =wn N
1 , = …n N1, , , is denoted

¯ = …
( )

⁎ ⎡
⎣⎢

⎤
⎦⎥N N

w
1

, ,
1

,
B.1

Note that the converse is not always true: namely the scenario
¯ =wn N

1 , = …n N1, , , could occur even if the proposal density is
different from the target. Hence, in this case, we can assert ≤ESS N
(considering independent, non-negative correlated, samples). The
other extreme case is

¯ = [ ¯ = … ¯ = … ¯ = ] ( )( ) w w ww 0, , 1, , 0 , B.2
j

j N1

i.e., ¯ =w 1j and ¯ =w 0n (it can occur only if π( ) =x 0n ), for ≠n j with
∈ { … }j N1, , . The best possible scenario, in this case, is that the j-

th sample (associate to the weight ¯ =w 1j ) has been generated
exactly from π̄( )x (hence, with effective sample size equal to 1).
Thus, in this case, one can consider ≤ESS 1. The function ( ¯ )( )P wN

2

employ an optimistic approach for the two extreme cases pre-
viously described above:

( ¯ ) = ( )( ) ⁎P Nw , B.3N
2

( ¯ ) = ∀ ∈ { … } ( )( ) ( )P j Nw 1, 1, , . B.4N
j2

Moreover, considering a vector of type

¯ = … …
⎡
⎣⎢

⎤
⎦⎥C C C

w 0,
1

,
1

, 0, , 0, 0,
1

, , 0 ,

where only C entries are non-null with the same weight
C
1 , note

that

( ¯ ) = ( )( )P Cw . B.5N
2

Fig. B1 summarizes graphically these cases. This approach can
appear as a limitation given the previous observations but, using
4 As an example, consider the degenerate set of particles where all the samples
are the same, i.e., =x xi j for all i j, . In this case, we always have ( ¯ ) =( )P NwN

2 which is
clearly meaningless (if the target π is not a delta function).
only the information of w̄ , appears reasonable.
Appendix C. G-ESS functions induced by non-Euclidean
distances

In Section 3, we have pointed out the relationship between ( )PN
2

and the L2 distance between w̄ and ¯ ⁎w . Here, we derive other
G-ESS functions given based on non-Euclidean distances.

Distance L1: We derive a G-ESS function denoted as ( ¯ )Q wN ,
induced by the L1 distance. Let us define two disjoint sets of
weights

{ }{ ¯ … ¯ } = ¯ ¯ ≥ ∀ = … ( )
+ +

+w w w w N n N, , all : 1/ , 1, , , C.1N n n1

{ }{ ¯ … ¯ } = ¯ ¯ < ∀ = … ( )− −−w w w w N n N, , all : 1/ , 1, , , C.2N n n1

where =#{ ¯ … ¯ }+ + +
+N w w, ,

N1 and =#{ ¯ … ¯ }− − −+N w w, ,
N1 . Clearly,

+ =− +N N N and ∑ ¯ + ∑ ¯ ==
+

=
−+ −

w w 1i
N

i i
N

i1 1 . Thus, we can write

∑ ∑ ∑

∑ ∑

∥ ¯ − ¯ ∥ = ¯ − = ¯ − + − ¯

= ¯ − ¯ − −
( )

⁎

= =
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=

−
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⎛

⎝
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⎠
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C.3
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n
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i
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i
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N

i

1
1 1 1

1 1

and replacing the relationships ∑ ¯ = − ∑ ¯=
+

=
−+ −

w w1i
N

i i
N

i1 1 and
= −− +N N N ,
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=
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=
− ( ¯ )

+
( )

⁎

=

+
+

=
+ +

+

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w
N
N

N w N
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N
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C.4

i

N

i

i
N

i N

1
1

1

where

∑( ¯ ) = − ¯ + +
( )=

+ +
+

Q N w N Nw .
C.5

N
i

N

i
1

Note that ≤ ( ¯ ) ≤Q Nw1 N , with ( ¯ ) =⁎Q NwN and ( ¯ ) =( )Q w 1N
i for all

∈ { … }i N1, , . Maximizing QN is equivalent to minimizing the L1
distance between the pmf w̄ and the discrete uniform pmf ¯ ⁎w . We
remark that this is only one of the possible ESS functions induced
by the L1 distance. We choose ( ¯ )Q wN since it is proper and stable.

Norm L0: Interesting G-ESS expressions can be also obtained
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considering also the distance of the vector w̄ with respect to the
null vector containing all zeros as entries (i.e., the norm of w̄). For
instance, based on the Hamming distance [7], i.e., we have

( ¯ ) = − ( )( )V N Nw , C.6N Z
0

where Nz is the number of zeros in w̄ , i.e.,

=#{ ¯ = ∀ = … } ( )N w n N0, 1, , . C.7Z n

Observe that ≤ ( ¯ ) ≤( )V Nw1 N
0 and ( ¯ ) =( ) ⁎V NwN

0 and ( ¯ ) =( ) ( )V w 1N
i0 for

all ∈ { … }i N1, , .
Norm ∞L : Other kind of norms can suggest other suitable ESS

formulas. For instance,

∥ ¯ ∥ = ¯ … ¯ =
( ¯ ) ( )∞

⎡⎣ ⎤⎦w w
D

w
w

max , ,
1

,
C.8N

N
1

where

( ¯ ) =
¯ … ¯ ( )

(∞)
⎡⎣ ⎤⎦D

w w
w

1
max , ,

.
C.9

N
N1

This G-ESS function has also been recently considered in [18].
Appendix D. Derivation of generalized ess families

It is possible to design proper G-ESS fulfilling at least the
conditions C1, C2, C3 and C4 (with some degenerate exception),
given in the previous section. Below, we show a possible simple
procedure but several could be used. Let us consider a function

( ¯ ) → f w : N , which satisfies the following properties:
1. ( ¯ )f w is a quasi-concave or a quasi-convex function, with a

minimum or a maximum (respectively) at ¯ = …⁎ ⎡⎣ ⎤⎦w , ,
N N
1 1 .

2. ( ¯ )f w is symmetric in the sense of Eq. (11).
3. Considering the vertices of the unit simplex δ¯ = ( )( ) iw i in Eq.

(B.2), then we also assume

( ¯ ) =( )f cw ,i

where ∈ c is a constant value, the same for all = …i N1, , .

Let also consider the function ( ¯ ) +af bw obtained as a linear
transformation of ( ¯ )f w where ∈ a b, are two constants. Note
that, we can always set >a 0 if ( ¯ )f w is quasi-concave, or <a 0 if

( ¯ )f w is quasi-convex, in order to obtain ( ¯ )g w is always quasi-
concave. Hence, we can define the G-ESS function as

( ¯ ) =
( ¯ ) +

( ¯ ) = ( ¯ ) +
( )

E
af b

E af bw
w

w w
1

, or ,
D.1N N

In order to fulfill the properties 2 and 3 in Section 4, recalling
¯ = [ … ]⁎w , ,

N N
1 1 and δ¯ = ( )( ) iw i , we can properly choose the constant

values a b, in order to satisfy the following system of +N 1
equations and two unknowns a and b,

( ¯ ) + =

( ¯ ) + = ∀ ∈ { … } ( )

⁎

( )

⎧
⎨⎪
⎩⎪

af b
N

af b i N

w

w

1
,

1, 1, , . D.2
i

or

( ¯ ) + =

( ¯ ) + = ∀ ∈ { … } ( )

⁎

( )⎪

⎪⎧⎨
⎩

af b N

af b i N

w

w

,

1, 1, , , D.3
i

respectively. Note that they are both linear with respect to with
unknowns a and b. Moreover, since ( ¯ ) =( )f cw i for all ∈ { … }i N1, , ,
the system above is reduced to a ×2 2 linear system with solution
= −
[ ( ¯ ) − ( ¯ )]

= ( ¯ ) − ( ¯ )
[ ( ¯ ) − ( ¯ )] ( )

( ) ⁎

( ) ⁎

( ) ⁎

⎧

⎨
⎪⎪

⎩
⎪⎪

a
N

N f f
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f Nf

N f f

w w

w w
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1
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.
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( ¯ ) − ( ¯ ) ( )
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f f
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respectively. Below, we derive some special cases of the families
( )PN
r , ( )DN

r , ( )VN
r , and ( )SN

r defined in Section 5 and obtained used the

procedure above. In these families, we have ( ¯ ) = ∑ ( ¯ )=f wwr n
N

n
r

1 for

( )PN
r , and ( )VN

r , and ( ¯ ) = ∑ ( ¯ )=
⎡⎣ ⎤⎦f wwr n

N
n

r
r

1

1/
for ( )DN

r and ( )SN
r .
D.1. Special cases of ( ¯ )( )P wN
r

In the following, we analyze some special cases of the family
( ¯ )( )P wN

r in Eq. (17):
Case →r 0: In this case, the constants in Table 2 reach the

values → = −a ar N0
1 and → = +b br

N
N0

1. Let us define =0 00 ,

considering that =→ +lim 0 0r
r

0 (i.e., r approaches 0 from the right).
With this assumption, Thus, if no zeros are contained in w̄ then

( ¯ ) =f Nw0 and ( ¯ ) = =( )
+P NwN Na b

0 1

0 0
, whereas if w̄ contains NZ

zeros, we have ( ¯ ) = −f N Nw Z0 and

( ¯ ) =
+ ( )

( )P
N

N
w

1
,

D.6N
Z

0

where we recall that NZ is the number of zero within w̄. Note that,
clearly, ( ¯ ) =( ) ( )P w 1N

i0 for all ∈ { … }i N1, , , since = −N N 1Z .
Case =r 1: In this case, → ± ∞ar , → ∓ ∞br , when →r 1. Since

( ¯ ) →f w 1r if →r 1, we have an indeterminate form for
( ¯ ) = +g a bwr r r of type ∞ − ∞. Note that the limit

( )
( ¯ ) = −

( − ) ∑ ¯ + −→

( )

→

( − )

=
( − )

P
N N

N w N
wlim lim

1 1
,

r N
r

r

r

n
N

n
r r1 1

2

1
2

presents an indeterminate form of type 0
0
. Hence, using the

L'Hôpital's rule [20], i.e., deriving both numerator and denomi-
nator w.r.t. r and computing the limit, we obtain

( ¯ ) = − ( )
− ( ) − ( − ) ∑ ¯ ( ¯ )

= − ( )
− ( ) − ( − ) ∑ ¯ ( ¯ )

=
−

( )

−
( )

− ( − ) ∑ ¯
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− ( )
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where we have denoted as ( ¯ ) = − ∑ ¯ ( ¯ )=H w ww logn
N

n n1 2 the discrete
entropy of the pmf w̄n, = …n N1, , . Observe that ( ¯ ) =⁎H Nw log2

then ( ¯ ) = =( ) − ( )
−P NwN
N N

N
1 log

log
2

2
, whereas ( ¯ ) =( )H w 0i (considering

=0log 0 02 ), ( ¯ ) =( )P w 1N
1 .

Case =r 2: In this case, =a 12 and =b 02 , hence we obtain
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( )
( ¯ ) =

∑ ¯
( )

=

P
w

w
1

.N

n
N

n

2

1
2

Case → ∞r : We have → =∞
−a ar

N
N

1 and → =∞b br N
1 . If

¯ ≠ ¯ ( )w w i for all possible ∈ { … }i N1, , , then we have
( ¯ ) =→∞f wlim 0r r (since < ¯ <w0 1n , in this case) and

( ¯ ) = =(∞)P NwN b
1

r
. Otherwise, if ¯ = ¯ ( )w w i for some ∈ { … }i N1, , ,

then ( ¯ ) =→∞f wlim 1r r (where we have considered =→∞lim 0 0r
r and

=→∞lim 1 1r
r ) and ( ¯ ) = =(∞)

+P w 1N a b
1

r r
. We can summarize both

scenarios as

( ¯ ) =
¯ ≠ ¯ ∀ ∈ { … }
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(∞)
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D.2. Special cases of ( ¯ )( )D wN
r

Below, we analyze some special cases of the family ( ¯ )( )D wN
r in

Eq. (18):
Case →r 0: The coefficients of this family given in Table 2 reach

the values → =a a 0r 0 and → =b b 1r 0 . In this case, If ¯ = ¯ ( )w w i , we
have ( ¯ ) =→ f wlim 1r r0 (considering again =0 00 and = )∞1 1 .

Whereas, when w̄ is not a vertex, i.e., ¯ ≠ ¯ ( )w w i , then
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so that ( ¯ )→ a f wlimr r r0 has the indeterminate form of type × ∞0 that
can be converted to ∞

∞
as shown below. We can write
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Moreover, when →r 0 we have
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For →r 0, we can also write

( ¯ ) = ( ¯ ) ≈ + ¯ ( )w r w r wexp log 1 log , D.11n
r

n n

where we have used the Taylor expansion of first order of
( ¯ )r wexp log n . Replacing ( ¯ ) ≈ + ¯w r w1 logn

r
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Thus, we can write

∑ ∏( ¯ ) ≈ + ¯

( )= =

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎤

⎦

⎥
⎥
⎥N

w r w
1

1 log .

D.14n

N

n
r

r

n

N

n

N

r

1

1/

1

1 1/

Moreover, given ∈ x , for →r 0 we also have the relationship

( + ) → ( )rx x1 exp ,r
1

by definition of exponential function. Replacing the above, for
→r 0,

∏ ∏ ∏+ ¯ ⟶ ¯ = ¯

( )
= = =

⎡

⎣

⎢
⎢
⎢

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜⎜⎜⎜

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎞

⎠

⎟⎟⎟⎟

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥r w w w1 log exp log .
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Thus, finally we obtain

( )∑ ∏¯ = ( − ) ¯
( )→ = =

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥a w N wlim 1 ,
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and

( ¯ ) =
( − ) ∏ ¯ + ( )

→

( )

=
⎡⎣ ⎤⎦

D
N w

wlim
1

1 1
,
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( ¯ ) =
( − ) ( ¯ ) + ( )

( )D
N

w
w

1
1 GeoM 1 D.18N

0

Case =r 1. With a similar procedure used for ( )PN
1 , we obtain

( ¯ ) = ( ¯ )( ) ( )D Pw wN N
1 1 .
Case → ∞r . In this case, → =∞a a 1r and → =∞b b 0r and, since

the distance ( )∑ ¯=
⎡⎣ ⎤⎦wn

N
n

r r
1

1

converges to the ∞L distance,

[ ¯ … ¯ ]w wmax , , N1 , when → ∞r [28], we obtain ( ¯ ) =(∞)
[ ¯ … ¯ ]D wN w w

1
max , , N1

.

D.3. Special cases of ( ¯ )( )V wN
r

In the following, we study some special cases of the family
( ¯ )( )V wN

r in Eq. (19):
Case →r 0. The coefficients of this family given in Table 2 are
=a 10 and =b 00 . If w̄ does not contain zeros then

( ¯ ) = ∑ ( ¯ ) ==f w Nwr n
N

n
r

1 . Otherwise, assuming =0 00 , If w̄ contains

NZ zeros, we have ( ¯ ) = ∑ ( ¯ ) = −=f w N Nwr n
N

n
r

Z1 . Thus, in general, we
have

( ¯ ) = −( )V N Nw .Z
0

Case →r 1. In this, the coefficients ar and br diverge. We can
consider the limit

∑( − )
−

¯ + −
−

= ( − )
∑ ¯ −

−→

−

−
=

− →

=
−

⎛

⎝
⎜⎜⎜

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎞

⎠
⎟⎟⎟
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w
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N
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N
lim

1
1

1
1

1 lim
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1 1
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where we have a indetermination of type 0
0
. Using the L'Hôpital's

rule [20], i.e., deriving both numerator and denominator w.r.t. r

and computing the limit, we obtain (since = )xlog
x

e

log

log
2

2

∑ ¯ −

−
=

∑ ( ¯ ¯ )

−

=
− ∑ ( ¯ ¯ )

=
− ∑ ( ¯ ¯ )

( )

= ( ¯ )

→

=
− →

=
−
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hence, finally,

( ¯ ) = ( − ) ( ¯ ) +
( )

( )V N
H

N
w

w
1

log
1.
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Case → ∞r . The coefficients converge to the values
→ = −∞a a N1r and → =∞b b Nr . If ¯ ≠ ¯ ( )w w i then
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( ¯ ) = ∑ ( ¯ ) ==f ww 0r n
N

n
r

1 , so that ( ¯ ) = =(∞)
∞V b NwN . Otherwise, If

¯ = ¯ ( )w w i , since =∞0 0 and considering =∞1 1, then
( ¯ ) = ∑ ( ¯ ) ==f ww 1r n

N
n

r
1 , so that ( ¯ ) = + =(∞)

∞ ∞V a bw 1N .

D.4. Special cases of ( ¯ )( )S wN
r

Let us consider the family ( ¯ )( )S wN
r . Four interesting special cases

are studied below:
Case →r 0: The coefficients given in Table 2 in this case are

→ =a a 0r 0 and → =b b 1r 0 . If ¯ ≠ ¯ ( )w w i then ( ¯ ) → ∞f wr , Otherwise,

If ¯ = ¯ ( )w w i , since =∞0 0 and considering =∞1 1, then ( ¯ ) →f w 1r .
With a procedure similar to ( )DN

0 , it is possible to show that

( ¯ ) = ( − ) ( ¯ ) + ( )( )S N Nw wGeoM 1. D.200 2

Case →r 1
2
: We have =a 11/2 and =b 01/2 . Then, in this case,

( )( ¯ ) = ( ¯ ) = ∑ ¯( )
=S f ww wN n

N
n1/2 1

21
2 .

Case →r 1: With a similar procedure used for ( )VN
1 , it is possible

to obtain

( ¯ ) = ( − ) ( ¯ ) +
( )

( )S N
H

N
w

w
1

log
1.
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N
1

2

Case → ∞r : In this case, → = −∞a a Nr , → = +∞b b N 1r .
Moreover, ( ¯ ) → [ ¯ … ¯ ]f w ww max , ,r n1 [28], so that

( ¯ ) = ( + ) − [ ¯ … ¯ ] ( )(∞)S N N w ww 1 max , , . D.22N n1

Table 3 summarizes all the special cases.
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