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a b s t r a c t

Population Monte Carlo (PMC) sampling methods are powerful tools for approximating distributions of
static unknowns given a set of observations. These methods are iterative in nature: at each step they
generate samples from a proposal distribution and assign them weights according to the importance
sampling principle. Critical issues in applying PMC methods are the choice of the generating functions for
the samples and the avoidance of the sample degeneracy. In this paper, we propose three new schemes
that considerably improve the performance of the original PMC formulation by allowing for better ex-
ploration of the space of unknowns and by selecting more adequately the surviving samples. A theo-
retical analysis is performed, proving the superiority of the novel schemes in terms of variance of the
associated estimators and preservation of the sample diversity. Furthermore, we show that they out-
perform other state of the art algorithms (both in terms of mean square error and robustness w.r.t.
initialization) through extensive numerical simulations.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Bayesian signal processing, which has become very popular over
the last years in statistical signal processing, requires computing
distributions of unknowns conditioned on observations (and mo-
ments of them). Unfortunately, these distributions are often im-
possible to obtain analytically in many real-world challenging pro-
blems. An alternative is then to resort to Monte Carlo (MC) methods,
which approximate the target distributions with random measures
composed of samples and associated weights [1].

A well-known class of MC methods are those based on the
adaptive importance sampling (AIS) mechanism, such as Popula-
tion Monte Carlo (PMC) algorithms [2,3], which have been used in
missing data, tracking, biological applications, among others [4–8].
In these methods, a population of probability density functions
(pdfs) is adapted for approximating a target distribution through
an iterative importance sampling procedure. AIS is often preferred
to other MC schemes, such as Markov Chain Monte Carlo (MCMC),
since they present several advantages. On the one hand, all the
generated samples are employed in the estimation (e.g., there is no
“burn-in” period). On the other hand, the corresponding adaptive
schemes are more flexible, since they present fewer theoretical
issues than adaptive MCMC algorithms. Namely, the convergence
of AIS methods can usually be guaranteed under mild assumptions
regarding the tails of the distributions and the stability of the
adaptive process, whereas adaptive MCMC schemes must be de-
signed very carefully, since the adaptation procedure can easily
jeopardize the ergodicity of the chain (e.g., see [9] or [1, Section
7.6.3]).

The most characteristic feature in PMC [3] is arguably the use of
resampling procedures for adapting the proposal pdfs (see for
instance [10] for a review of resampling methods in particle fil-
tering). The resampling step is a fast, often dimensionality-free,
and an easy way of adapting the proposal pdfs by using informa-
tion about the target. However, resampling schemes present some
important drawbacks, such as the sample impoverishment. At the
resampling step, the proposal pdfs with poor performance (i.e.,
with low associated weights) are likely to be removed, thus
yielding a reduction of diversity. Since the publication of the
standard PMC [3], several variants have been considered, partly in
an attempt to mitigate this issue. In the D-kernel algorithm [11,12],
the PMC kernel is a mixture of different kernels and the weights of
the mixture are iteratively adapted in an implicit expectation-
maximization (EM) algorithm. This procedure is refined through a
double Rao–Blackwelization in [13]. The mixture population
Monte Carlo algorithm (M-PMC) proposed in [14] also adapts a
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mixture of proposal pdfs (weights and parameters of the kernels).
The M-PMC belongs to the family of AIS methods, since it itera-
tively draws the samples from the mixture that is updated at every
iteration without an explicit resampling step. Since drawing from
the mixture can be interpreted as an implicit multinomial re-
sampling, this method retains some similarities with the standard
PMC scheme. A nonlinear transformation of the importance
weights in the PMC framework has also been proposed in [15].
Other sophisticated AIS schemes, such as the AMIS [16] and the
APIS [17] algorithms, have been recently proposed in the literature.

In this paper, we study three novel PMC schemes that improve
the performance of standard PMC approach by allowing a better
exploration of the space of unknowns and by reducing the var-
iance of the estimators. These alternatives can be applied within
some other sophisticated AIS approaches as well, such as the SMC
samplers [18]. For this reason, we mainly compare them with the
standard PMC [3], since the novel schemes could be automatically
combined with the more sophisticated AIS techniques.

First of all, we introduce an alternative form of the importance
weights, using a mixture of the proposal pdfs in the denominator of
the weight ratio. We provide an exhaustive theoretical analysis,
proving the unbiasedness and consistency of the resulting estimator,
and showing the reduction in the variance of the estimator w.r.t. the
estimator obtained using the standard weights. We also prove that the
use of this mixture decreases the averaged mismatch between the
numerator (target) and the function in the denominator of the IS
weight in terms of L2 distance. Moreover, we test this alternative
scheme in different numerical simulations, including an illustrative toy
example in Section 5.1, showing its practical benefit.

In the second proposed scheme, we generate several samples
from every proposal pdf (not only one, as in PMC) and then we
resample them jointly (all the samples at once, keeping fixed the
total number of proposal pdfs). In the third proposed scheme, we
consider again the generation of several samples from every pro-
posal pdf, but the resampling is performed separately on the set of
samples coming from each proposal, therefore guaranteeing that
there will be exactly one representative from each of the in-
dividual mixture components in the random measure.

We show, through extensive computer simulations in several
different scenarios, that the three newly proposed variants provide a
substantial improvement compared to the standard PMC. In addition,
we test the proposed variants on a standard implementation of the
SMC samplers [18], showing also an improvement of the perfor-
mance. On the one hand, they yield unbiased estimators with a re-
duced variance, as also proved theoretically. On the other hand, they
outperform the standard PMC in terms of preservation of sample
diversity and robustness w.r.t. initialization and parameter choice.
2. Problem statement

Let us consider the variable of interest, ∈ x Dx, and let ∈ y Dy

be the observed data. In a Bayesian framework, the posterior
probability density function (pdf), here referred to as target, con-
tains all the information about the parameters of interest and is
defined as

π π˜( | ) =
ℓ( | ) ( )

( )
∝ ( ) = ℓ( | ) ( )

( )
p

Z
px y

y x x
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where ℓ( | )y x is the likelihood function, ( )p x0 is the prior pdf, and
( )Z y is the model evidence or partition function (useful in model

selection).1 The goal is to compute some moment of x, i.e., an
1 From now on, we remove the dependence on y in order to simplify the
notation.
integral measure w.r.t. the target pdf,

∫ π= ( ) ( ) ( )I
Z

f dx x x
1

, 2

where f can be any square integrable function of x w.r.t. π ( )x , and
∫ π= ( )Z dx x .2

In many practical applications, both the integral (2) and Z
cannot be obtained in closed form and must be approximated.
Importance sampling methods allow for the approximation of
both quantities by a set of properly weighted samples.
3. Population Monte Carlo (PMC)

3.1. Description of the original PMC algorithm

The PMC method [3] is a well-known iterative adaptive im-
portance sampling technique. At each iteration it generates a set of
N samples { }( )

=xi
t

i
N

1, where t denotes the iteration number and i
denotes the sample index. In order to obtain the samples, the
original PMC algorithm makes use of a collection of proposal
densities { ( )}( )
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weight of a particular sample represents the ratio between the
evaluation, at the sample value, of the target distribution and the
evaluation at the sample value of the proposal used to generate it.
The method proceeds iteratively (up to the maximum iteration
step considered, T), building a global importance sampling esti-
mator using different proposals at every iteration. The new pro-
posals are obtained by updating the set of proposals in the pre-
vious iteration.

There are two key issues in the application of PMC methods:
the adaptation of the proposals from iteration to iteration and the
way resampling is applied. The latter is critical to avoid the de-
generacy of the random measure, i.e., to avoid a few particles
having extremely large weights and the rest negligible ones [1,19].
Through the resampling procedure one selects the most promising
streams of samples from the first iteration up to the current one.
Several resampling procedures have been proposed in the litera-
ture [20,21]. In the standard PMC [3], multinomial resampling is
the method of choice, and consists of sampling N times from the
discrete probability mass defined by the normalized weights. As a
result of this procedure, the new set of parameters used to adapt
the proposals for the generation of samples in the next iteration is
selected. In summary, the standard PMC technique consists of the
steps shown in Table 1.

3.2. Estimators and consistency

All the generated samples can be used to build a global ap-
proximation of the target. This can be done by first normalizing all
the weights from all the iterations,
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and then providing the pairs ρ{ ¯ }( ) ( )x ,i
t

i
t for = …i N1, , and

= …t T1, , . This procedure to compute the weights is equivalent to
applying a static importance sampling technique that considers NT
different proposal pdfs and all the corresponding samples. If the
2 Let us recall that ( )f x is square integrable w.r.t. π ( )x if ( ) ∈ πf Lx 2, i.e., if
∫ π( ) ( ) < ∞f dx x x2 .



Table 1
Standard PMC algorithm [3].

1. [Initialization]: Select the parameters defining the N proposals:

� The adaptive parameters μ μ= { … }( ) ( ) ( ), , N
1

1
1 1 .

� The set of static parameters, { } =Ci i
N

1.

E.g., if the proposals were Gaussian distributions one could select the adapting parameters in ( )1 as the means of the proposals (that would be updated through the
iterations) and the static parameters { } =Ci i

N
1 as their covariances [3].

2. [For =t 1 to T ]:
(a) Draw one sample from each proposal pdf,
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(b) Compute the importance weights,
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and normalize them,
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(c) Perform multinomial resampling by drawing N independent parameters μ ( + )
i

t 1 from the discrete probability random measure,
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The new set of adaptive parameters defining the next population of proposals becomes

μ μ= { … } ( )( + ) ( + ) ( + ), , . 7t t
N

t1
1

1 1

3. [Output, =t T ]: Return the pairs ρ{ ¯ }( ) ( )x ,i
t

i
t , with ρ̄ ( )

i
t given by Eq. (8), for = …i N1, , and = …t T1, , .
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normalizing constant Z is known, the integral in Eq. (2) is ap-
proximated by the unbiased estimator
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When the normalizing constant is unknown, the unbiased esti-
mate of Z is substituted in Eq. (9), yielding the self-normalized
estimator
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is the unbiased estimate of the normalizing constant.
4. Improved PMC schemes

In the following, we introduce several alternative strategies
that decrease the variance of the estimators by exploiting the
mixture perspective, and improve the diversity of the population
w.r.t. the standard PMC. More specifically, we study three different
PMC schemes: one related to the strategy for calculating the
weights and the other two based on modifying the way in which
the resampling step is performed. Although we concentrate on the
standard PMC, we remark that these alternative schemes can be
directly applied or combined in other more sophisticated PMC
algorithms. Moreover, the alternative schemes can be easily im-
plemented in other Monte Carlo methods with resampling steps,
such as the Sequential Monte Carlo (SMC) samplers [18], as we
show in Sections 5.2 and 5.3.
4.1. Scheme 1: Deterministic mixture PMC (DM-PMC)

The underlying idea of PMC is to perform a good adaptation of the
location parameters μ ( )

i
t , i.e., where the proposals of the next iteration

will be centered (e.g., if ( )qi
t is a Gaussian pdf, then μ ( )

i
t is its mean).

These parameters are obtained at each iteration by sampling from π̂ −t
N

1

in Eq. (6) (i.e., via resampling), which is a random measure that ap-
proximates the target distribution, i.e., μ π∼ ^( )

−i
t

t
N

1. As a direct con-

sequence of the strong law of large numbers, ^ →I It almost surely (a.s.)
as → ∞N under very weak assumptions [22] (the support of the
proposal includes the support of the target and < ∞I ). Furthermore,



3 The effective sample size is the number of independent samples drawn from
the target distribution that are equivalent (in terms of variance of the estimators) to
the performance of the N samples used in the importance sampling estimator.
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by setting ( ) = ( ≤ )f X X zz , where = [ … ]X XX , , D1 x , = [ … ]z zz , , D1 x ,
and ( ≤ ) X z is defined as

∏( ≤ ) = ( ≤ )
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d
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x

where ( ≤ ) X zd d denotes the indicator function for the d-th compo-
nent ( ≤ ≤ )d D1 x of the variable of interest,
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then = ( )I I z becomes the multi-variate cumulative distribution

function (cdf) of π ( )z . Consequently, since ^ ( ) → ( )I Iz zt a.s. for any value
of z as → ∞N [22], μ π∼ ( )( ) xi

t a.s. as → ∞N . In short, since the cdf

associated to π̂ ( )− xt
N

1 (which is the pdf used for resampling) converges
to the target cdf (i.e., the cdf associated to π ( )x ) as → ∞N , then the
outputs of the resampling stage (i.e., the means μ ( )

i
t ) are asymptoti-

cally distributed as the target.
Therefore, the equally weighted mixture of the set of proposals

at the t-th iteration, given by

∑ μψ ( ) = ( | )
( )

( )

=

( ) ( )

N
qx x C

1
, ,

12
t

i

N

i
t

i
t

i
1

can be seen as a kernel density approximation of the target pdf,
where the proposals, μ{ ( | )}( ) ( )

=q x C,i
t

i
t

i i
N

1, play the role of the kernels
[23, Chapter 6]. In general, this estimator has non-zero bias and
variance, depending on the choice of q, Ci, and the number of
samples, N. However, for a given value of N, there exists an optimal
choice of *Ci which provides the minimum Mean Integrated Square
Error (MISE) estimator [24]. Using this optimal covariance matrix

*Ci , it can be proved that
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pointwise as → ∞N [24]. Hence, resampling naturally leads to a
concentration of the proposals around the modes of the target for
large values of N.

Therefore, since the performance of an importance sampling
method relies on the discrepancy between the numerator (the
target) and the denominator (usually, the proposal pdf), a rea-
sonable choice for calculating the importance weights is
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where, as opposed to Eq. (4), the complete mixture of proposals
ψ ( )x is accounted for in the denominator.

4.1.1. Theoretical justification
The first justification for using these deterministic mixture (DM)

weights is merely mathematical, since the estimator Ît of Eq. (9)
with these weights is also unbiased (see the proof in Appendix
A.2). The main advantage of this new scheme is that it yields more
efficient estimators, i.e. with less variance, combining the de-
terministic mixture sampling (as in standard PMC) with the
weight calculation that accounts for the whole mixture. Namely,

the estimator Ît in Eq. (9), computed using the DM approach, has
less variance than the estimator obtained by the standard PMC, as
proved in Appendix A.3 for any target and set of proposal pdfs.
These DM weights have been explored in the literature of multiple
importance sampling (see for instance the balance heuristic
strategy of [25, Section 3.3] or the deterministic mixture approach
of [26, Section 4.3]).

The intuition behind the variance reduction is clear in a multi-
modal scenario, where different proposals have been successfully
adapted covering the different modes, and therefore, the whole
mixture of proposals has less mismatch w.r.t. the target than each
proposal separately. Indeed, it can be easily proved that the mis-
match of the whole mixture w.r.t. the target is always less than the
average mismatch of each proposal. More precisely, let us consider
the Lp functional distance (with >p 1) among the target and an
arbitrary function ( )g x ,

∫π π( ˜( ) ( )) = | ˜( ) − ( )| ( )
⎡
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and let us recall Jensen's inequality [27],
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which is valid for any convex function φ (·), any set of non-negative
weights αi such that α∑ == 1i

N
i1 , and any collection of points { } =zi i

N
1

in the support of φ. Then, by using Jensen's inequality in Eq. (16)

with ∫φ ( ( )) = | ( )|⎡⎣ ⎤⎦z z dx x xp p1/
, α =i N

1 and π= ˜( ) − ( )z qx xi i , it is
straightforward to show that
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Indeed, although we have focused on the Lp distance, the proof is
valid for any distance function which is based on a norm (i.e., any
distance s.t. φ ( ( )) = ∥ ( )∥z zx x for some norm ∥·∥), since every norm
is a convex function.

Another benefit of the DM-PMC scheme is the improvement in
the exploratory behavior of the algorithm. Namely, since the
weights in DM-PMC take into account all the proposals (i.e., the
complete mixture) for their calculation, they temper the over-
representation of high probability areas of the target. Note that, as
a consequence of the variance reduction of the DM weights, the
effective sample size in DM-PMC in a specific iteration is larger
than with the standard IS weights.3 The expression =

∑ ¯
ESS

w

1

n
N

n
2 is

widely used as a sample approximation of the effective sample
size (see its derivation in [28]). Therefore, if the true underlying
effective sample size (the ratio of variances) is larger with the DM
weights (thanwith the standard IS weights), a similar behavior can
be considered for ESS. As a consequence, the diversity loss asso-
ciated to the resampling step is reduced by using with the DM
weights. See [29] for a more detailed discussion about effective
sample size in static multiple importance sampling schemes.

4.1.2. Computational complexity discussion
In this DM-PMC scheme, the performance is improved at the

expense of an increase in the computational cost (in terms of
proposal evaluations) in the calculation of the weights. However, it
is crucial to note that all the proposed schemes keep the same
number of evaluations of the target as in the standard PMC. Hence,
if the target evaluation is much more costly than the evaluation of
the proposal pdfs (as it often happens in practical applications),
the increase in computational cost can be negligible in many
scenarios of interest. Note that other adaptive multiple IS algo-
rithms, e.g. [12–14], also increase the number of proposal evalua-
tions, and they state that the most significant computational cost
is associated to the evaluation of the target (see this argument in
[14, Section 2.2]).

Finally, note that the variant partial-DM proposed in [30]



Fig. 1. Sketch of the global and local resampling schemes considering N proposal
pdfs at the t-th iteration, ( )qi

t for = …i N1, , and = …t T1, , , and K samples per
proposal.
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within the static multiple IS framework, could be easily adapted to
the DM-PMC. In this weighting scheme, a partition (forming
subsets) of the set of proposals is a priori performed. The weight of
each sample only accounts at the denominator for a subset of
proposals, i.e., reducing the number of proposal evaluations. This
variant achieves an intermediate point in the complexity-perfor-
mance tradeoff, between the standard weights and the DM
weights.

4.1.3. Comparison with other methods
Note that other methods also use a mixture of proposals at the

denominator of the weights. For instance, in the D-kernel of [12],
each sample is drawn from a mixture of D kernels (proposals), and
this same mixture is evaluated at the denominator of each weight.
Nevertheless, note that these D kernels are centered at the same
position, and the weight of each sample ignores the locations of
the −N 1 proposals. In the M-PMC of [14], a single mixture is used
for sampling and weighting the N samples at each iteration. Note
that this method does not use an explicit resampling step, and the
mixture is completely adapted (weights, means, and covariances).

In the sequel, we adopt the weights of Eq. (14) for the other two
proposed PMC schemes due to their theoretical and practical ad-
vantages discussed above.

4.2. Scheme 2: Multiple samples per mixand with global resampling
(GR-PMC)

We propose to draw K samples per individual proposal or
mixand, instead of only one as done in the standard PMC algo-
rithm. Namely,

μ∼ ( | ) ( )
( ) ( )qx x C, 18i k
t

i i
t

i,

for = …i N1, , and = …k K1, , . Then, we compute the corre-
sponding DM weights as in (14),
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Therefore, at each iteration we have a set of KN generated samples,
i.e., = { … … … }( ) ( ) ( ) ( ) ( )x x x x, , , , , ,t t

K
t

N
t

N K
t

1,1 1, ,1 , . Resampling is performed
in the same way as in standard PMC, although now the objective is
to downsample, from KN samples to N samples, according to the
normalized weights,
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We refer to this type of resampling as global resampling, since
all the samples, regardless of the proposal used to generate them,
are resampled together. After resampling, a new set of adapted
parameters for the next iteration, μ μ= { … }( + ) ( + ) ( + ), ,t t

N
t1

1
1 1 , is

obtained. Note that, through this paper, for the sake of simplicity
in the explanation of the proposed improvements, we use the
standard multinomial resampling, but other resampling schemes
that reduce the path-degeneracy problem can be considered in-
stead, e.g. the residual or stratified resampling (see [31,20]).

The PMC algorithms suffer from sample impoverishment,
which is a side effect inherent to adaptive algorithms with re-
sampling steps such as SMC samplers or particle filters (see for
instance [32, Section V-C] or [33, Section 2]). In other words, there
is a diversity reduction of the samples after the resampling step (in
a very adverse scenario, the N resampled samples can be N copies
of the sample). The sample impoverishment of the standard PMC
is illustrated in Figs. 4, 5, and A1, where the increase of diversity of
the algorithms proposed in this paper is shown by numerical si-
mulations. These figures correspond to the example of Section 5.2
and will be properly introduced below. In multimodal scenarios,
proposals of the standard PMC that are exploring areas with
negligible probability masses are very likely to be removed before
they find unexplored relevant areas. If we draw K samples per
proposal, the samples of a well-placed proposal will have similarly
high weights, but as for the explorative proposals, increasing K
also increases their chances of discovering local relevant features
of the target π̃( )x . Then, the GR-PMC promotes the local explora-
tion of the explorative proposals, increasing the chances of not
being removed in the resampling step. Figs. 4 and 5 show the
reduction of path-degeneracy of GR-PMC in a multimodal sce-
nario, and they will be properly explained in the example of Sec-
tion 5.2.

Note that using >K 1 does not entail an increase in the com-
putational cost w.r.t. the standard PMC or DM-PMC (where K¼1) if
the number of evaluations of the target is fixed to L¼KNT. Indeed,
since the number of resampling stages is reduced to = ( )T L KN/ ,
the computational cost decreases, although at the expense of
performing less adaptation steps than for K¼1. Therefore, for a
fixed budget of target evaluations L and a fixed number of pro-
posals N, one must decide whether to promote the local explora-
tion (possibly reducing the path degeneracy) by increasing K, or
performing more adaptation steps T. Thus, there is a trade-off
between local and global exploration as the numerical experi-
ments will also show in Section 5. This suggests that, for a fixed
computational budget L, there exists an optimal value of samples
per proposal and iteration, K*, which will also depend on the target
and cannot be found analytically. This issue can be partially ad-
dressed through the use of local resampling, as shown in the fol-
lowing section.
4.3. Scheme 3: Multiple samples per mixand with local resampling
(LR-PMC)

Consider again K samples generated from each proposal pdf. In
this alternative scheme, the estimators are built as in GR-PMC, i.e.,
with the weights of Eq. (19). Nevertheless, unlike the previous
method, here the resampling step is performed independently for
each proposal. Namely, at the t-th iteration, K samples are drawn
from each of the N proposal pdfs, and N parallel resampling pro-
cedures are independently performed within each subset of K
samples (see Fig. 1 for a visual comparison of both resampling
schemes). More precisely, the adaptive parameter for the next
iteration of the i-th proposal, μ ( + )

i
t 1 for = …i N1, , , is resampled

from the set

= { … } ( )
( ) ( ) ( )x x, , , 21i
t

i
t

i K
t

,1 ,

using the multinomial probability mass function with probabilities



Fig. 2. (Ex. of Section 5.1) Estimation of the normalizing constant (true value Z¼1) in Scenario 1 (perfect matching). (a) Target pdf (black solid line) and proposal pdfs (red
and blue dashed lines). (b) Boxplot showing the 25th and 75th percentiles of the estimators ẐIS and ẐDM . The maximum value of ẐIS is 35,864. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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where the unnormalized weights ( )wi k
t
, are given by Eq. (19). Note

that again we can use any resampling technique, including the
standard multinomial or other advanced schemes [31,20]. In LR-
PMC, there is no loss of diversity in the population of proposals,
since each proposal at the current iteration yields another pro-
posal in the next iteration. In other words, exactly one particle per
proposal survives after the resampling step.

The adaptation scheme of LR-PMC can be intuitively under-
stood as follows. Let us consider for a moment a modified version
of LR-PMC where the weights used in the resampling are those of
standard PMC of Eq. (5) instead of the DM weights of Eq. (22). This
modified scheme is equivalent to N parallel PMC samplers, where
the i-th PMC draws K samples from the i-th proposal, applying a
resampling step independently from the other −N 1 PMC sam-
plers. By using the DM weights in LR-PMC, we incorporate co-
operation among the N proposals. When the proposal pdfs are
close to each other, the local resampling scheme (with DM
weights) adds a “repulsive” interaction: among the K samples of a
specific proposal, the resampling promotes the samples in areas
that are less covered by the other −N 1 proposals (and where, at
the same time, the target evaluation is high). Therefore, this
scheme performs a cooperative exploration of the state space by
the N proposals. Note that, when the proposal pdfs are located far
away from each other, the weights of the K samples of a specific
proposal are in practice not affected by other −N 1 proposals. In
this case, the LR-PMC works as the N parallel PMC samplers de-
scribed above.

Finally, let us remark that a mixed global–local resampling
strategy (e.g., performing local resampling on clusters of propo-
sals) could also be devised in order to obtain the advantages of
both global and local resampling.
4 In this setup, each proposal approximately covers a different half of the target
probability mass, since each one coincides with a different mode of the target.
5. Numerical results

5.1. Estimation of the normalizing constant

Let us consider, as a target pdf, a bimodal mixture of Gaussians
π ν ν( ) = ( ) + ( )x c x cx ; , ; ,1

2 1 1
2 1

2 2 2
2 with ν = − 31 and ν = 32 , and

=c 11
2 and =c 12

2 . The proposal pdfs are also Gaussians:
μ σ( ) = ( )q x x; ,1 1 1 and μ σ( ) = ( )q x x; ,2 2 2 . At this point, we
consider two scenarios:

� Scenario 1: In this case, μ ν=1 1, μ ν=2 2, σ = c1
2

1
2, and σ = c2

2
2
2.

Then, both proposal pdfs can be seen as a whole mixture that
exactly replicates the target, i.e., π ( ) = ( ) + ( )q qx x x1

2 1
1
2 2 . This is

the desired situation pursued by an adaptive importance sam-
pling algorithm: each proposal is centered at a different mode
of the target, and their scale parameters perfectly match the
scales of the modes. Fig. 2(a) shows the target pdf in solid black
line, and both proposal pdfs in blue and red dashed lines,
respectively. Note that the proposals are scaled (each one
integrates up to 1/2 so we can see the perfect matching
between the target and the mixture of proposal densities).

� Scenario 2: In this case, μ = − 2.51 , μ = 2.52 , σ = 1.21
2 , and

σ = 1.22
2 . Therefore, there is a mismatch between the target and

the two proposals. Fig. 3(a) shows the target pdf in solid black
line, and both proposal pdfs in blue and red dashed lines,
respectively.

The goal is estimating the normalizing constant using the estima-

tor Ẑ of Eq. (11) with N¼2 samples, one from each proposal, and

t¼1. We use the standard PMC weights of Eq. (4) (estimator ẐIS)

and the DM-PMC weights of Eq. (14) (estimator ẐDM). In order to
characterize the two estimators, we run ·2 105 simulations for each
method. Note that the true value is Z¼1.

Fig. 2(b) shows a boxplot of the distribution of the estimator Ẑ ,
obtained with both methods for Scenario 1. The blue lower and
upper edges of the box correspond to the 25th and 75th percen-
tiles, respectively, while the red line represents the median. The
vertical black dashed whiskers extend to the minimum and
maximum obtained values. Since the maxima cannot be appre-
ciated in the figure, they are displayed in Table 2, altogether with
the variance of the estimators. Note that even in this extremely
simple and idealized scenario (perfect adaptation), the estimator
obtained using the standard IS weights (i.e., the estimator used in
standard PMC) has a poor performance. In most of the realizations,
^ ≈Z 0.5IS because each proposal (which integrates up to one) is
adapted to one of the two modes (which contain roughly half of

the probability mass).4 Since [^ ] = =E Z Z 1IS , in a few runs the value



Fig. 3. (Ex. of Section 5.1) Estimation of the normalizing constant (true value Z¼1) in Scenario 2 (proposal–target mismatch). (a) Target pdf (black solid line) and proposal
pdfs (red and blue dashed lines). (b) Boxplot showing the distribution of the estimators ẐIS and ẐDM . The maximum value of ẐIS is 77,238. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)

Table 2

(Ex. of Section 5.1) Maximum value of the estimator Ẑ in ·2 105 runs for each
scheme, in two different scenarios.

Estimator ẐIS ẐDM
Estimator ẐIS ẐDM

(Sc. 1) Max. 35,864 1 (Sc. 2) Max. 77,238 1.59

(^)Var Z 7891 0 (^)Var Z 6874 0.01
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of the ẐIS is extremely high as shown in Table 2. These huge values
occur when a sample drawn from the tail of the proposal falls
close to the other mode of the target (where actually the other
proposal is placed). On the other hand, note that the DM estimator

has a perfect performance (i.e., ^ =Z 1DM always, thus implying zero
variance). Hence, this simple example shows that a substantial
variance reduction can be attained by using the mixture at the
denominator.

Fig. 3(b) shows an equivalent boxplot for Scenario 2. In this
case, the mismatch between proposals and target pdfs worsens

both schemes. Note that the estimator ẐDM now does not perfectly

approximates Z, but still largely outperforms the estimator ẐIS. In
particular, the median is still around the true value, and its var-
iance is smaller.
5.2. Bi-dimensional example

We first consider a bivariate multimodal target pdf, consisting
of a mixture of five Gaussians, i.e.,

∑ νπ Σ( ) = ( ) ∈
( )=

x x x
1
5

; , , ,
23i

i i
1

5
2

where μ( )x C; , denotes a normalized Gaussian pdf with mean
vector μ and covariance matrix C, ν = [ − − ]⊤10, 101 , ν = [ ]⊤0, 162 ,
(footnote continued)
However, in standard PMC, the weight of each sample only accounts for its own
proposal, and therefore there is not an exchange of information among the two
proposals. Note that, if both proposals were covering the same mode (and therefore
missing the other one), the weights would also be w¼0.5 in most of the runs; the
lack of information exchange between the two samples, makes it impossible to
know whether the target mass reported by the weight of each sample is the same
and should be accounted “once”, or whether it is from another area and it should be
accounted “twice”.
ν = [ ]⊤13, 83 , ν = [ − ]⊤9, 74 , ν = [ − ]⊤14, 145 , Σ = [ ]2, 0.6; 0.6, 11 ,
Σ = [ − − ]2, 0.4; 0.4, 22 , Σ = [ ]2, 0.8; 0.8, 23 , Σ = [ ]3, 0; 0, 0.54 ,
and Σ = [ − − ]2, 0.1; 0.1, 25 . In this example, we can analytically
compute different moments of the target in (23), and therefore we
can easily validate the performance of the different techniques. In
particular, we consider the computation of the mean of the target,

[ ] = [ ]⊤E X 1.6, 1.4 , and the normalizing constant, Z¼1, for
π∼ ( )x x

Z
1 . We use as figure of merit the Mean Squared Error (MSE)

in the estimation of [ ]E X (averaged over both components) and Z.
For simplicity, we assume Gaussian proposal densities for all of

the methods compared, and deliberately choose a “bad” in-
itialization of the means in order to test the robustness and the
adaptation capabilities. Specifically, the initial adaptive parameters
of the individual proposals are selected uniformly within the
[ − ] × [ − ]4, 4 4, 4 square, i.e., μ ∼ ([ − ] × [ − ])( ) 4, 4 4, 4i

1 for
= …i N1, , . This initialization is considered “bad”, since none of the

modes of the target falls within the initialization square. We
test all the alternatives using the same isotropic covariance
matrices for all the Gaussian proposals, σ=C Ii

2
2 with

σ ∈ { }1, 2, 5, 10, 20, 70 . All the results have been averaged over
500 independent experiments, where the computational cost of
the different techniques (in terms of the total number of evalua-
tions of the target distribution) is fixed to L¼KNT.5 We compare
the following schemes:

� Standard PMC [3]: Standard PMC algorithm described in Table 1
with N¼100 proposals and T¼2000 iterations. The total num-
ber of samples drawn is = = ·L NT 2 105.

� M-PMC [14]: M-PMC algorithm proposed in [14] with D¼100
proposals, N¼100 samples per iteration, and T¼2000 itera-
tions. The total number of samples drawn is = = ·L NT 2 105.

� SMC [18]: We apply a Sequential Monte Carlo (SMC) scheme
combining resampling and MCMC steps. Specifically, we con-
sider Metropolis–Hastings (MH) steps as forward reversible
kernels. In this example, we do not employ a sequence of
tempered target pdfs, i.e., we always consider the true target
density. The proposal pdfs for the MH kernels coincide with the
Gaussian proposals employed in the propagation resampling
steps, with the scale parameters Ci of the other tested methods.
Due to the application of the MH steps, in this case, > ·L 2 105.

� K-PMC: Standard PMC scheme using N¼100 proposals, but
5 Note that L¼KNT also corresponds to the total number of samples generated
in all the schemes.
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drawing >K 1 samples per proposal at each iteration and per-
forming global resampling (GR). In order to keep the total
number of samples constant, the number of iterations of the
algorithm is now = · ( )T KN2 10 /5 .

� DM-PMC: Standard PMC using the weights of Eq. (14), N¼100
proposals, T¼2000 iterations, and drawing K¼1 samples per
proposal.

� GR-PMC: PMC scheme with multiple samples per mixand (K),
weights computed as Eq. (19), and global resampling (GR). We use
N¼100 proposals and = ( )T L KN/ iterations with = ·L 2 105 (as in
the three previous schemes). In particular, we test the values

∈ { }K 2, 5, 20, 100, 500 , and thus ∈ { }T 1000, 400, 100, 20, 4 .
� LR-PMC: PMC scheme with multiple samples per mixand (K)

and local resampling (LR). All the parameters are selected as in
the GR-PMC scheme.

� Improved SMC: SMC scheme with the improvements proposed
in this paper. In all cases, we use the weights of Eq. (14) (DM-
SMC), and we try the GR-SMC and LR-SMC variants. We test

∈ { }K 5, 20 .

Table 3 shows the MSE in the estimation of [ ]E X (averaged over
both components) for π∼ ( )x x

Z
1 . We can see that all the proposed

schemes outperform the standard PMC for any value of s. In
general, the local resampling (LR) works better than the global
resampling (GR). Moreover, we note that the optimum value of K
depends on the value of s, the scale parameter of the proposals:
for small values of s (e.g., σ = 1 or σ = 2) small values of K lead to
better performance, whereas a larger value of K (and thus less
iterations T) can be used for larger values of s (e.g., σ = 10 or
σ = 20). In addition, the proposed methods also outperform the
M-PMC algorithm in this scenario. Note that M-PMC is an adaptive
importance sampling algorithm that does not perform the re-
sampling step. Finally, note that the performance of the SMC
sampler can be also improved with the proposed modifications.

The large MSE values in Table 3 for some schemes and sets of
Table 3

(Ex. of Section 5.2) MSE in the estimation of [ ]E X , for several values of s and K, keeping th
The best results for each value of s are highlighted in bold-face.

= = ·L NKT 2 105

N Algorithm σ = 1 σ = 2 σ = 5

5 Standard PMC [3] 92.80 (85.23–99.57) 38.71 (31.96–47.69) 12.65 (7.1
100 75.17 (72.72–78.20) 59.42 (54.78–64.23) 14.24 (12

·5 104 68.29 (66.92–69.19) 37.44 (34.57–41.98) 7.01 (5.7

DM-PMC (K¼1) 72.48 (69.79–75.14) 36.21 (33.54–39.26) 5.34 (4.4
GR-PMC (K¼2) 69.41 (66.02–72.30) 26.23 (22.26–30.83) 3.09
LR-PMC (K¼2) 2.68 (1.85–3.54) 0.007 (0.005–0.009) 0.010 (0
GR-PMC (K¼5) 67.04 (64.26–69.53) 17.44 (14.74–20.55) 0.11
LR-PMC (K¼5) 8.04 (6.65–9.65) 0.012 (0.007–0.019) 0.008 (0
GR-PMC (K¼20) 61.58 (56.94–66.03) 15.13 (12.30–18.81) 0.42
LR-PMC (K¼20) 9.51 (8.49–10.53) 1.16 (0.54–1.89) 0.011 (0
GR-PMC (K¼100) 64.94 (61.67–67.66) 12.50 (10.65–15.53) 0.08
LR-PMC (K¼100) 9.60 (8.58–10.66) 1.21 (0.64–1.88) 0.022 (0
GR-PMC (K¼500) 58.49 (54.10–62.20) 9.63 (7.81–11.45) 0.08
LR-PMC (K¼500) 14.79 (13.12–16.54) 6.72 (5.30–8.39) 0.10

100 M-PMC [14] 71.39 (65.22–77.36) 81.33 (71.59–90.04) 18.14 (1
10 84.14 (73.46–97.81) 81.68 (67.66–95.91) 6.49 (
100 SMC [18] 77.00 (76.35–77.66) 76.57 (75.60–77.66) 15.98 (1

·5 104 69.08 (68.34–69.91) 51.29 (44.10–57.26) 20.48 (

DM-SMC (K¼1) 70.95 (70.16–71.74) 42.40 (41.49–43.39) 1.91
GR-SMC (K¼5) 66.64 (65.42–67.84) 41.54 (39.93–43.01) 0.16

100 LR-SMC (K¼5) 8.16 (7.68–8.66) 2.32 (1.92–2.71) 0.007 (0.
GR-SMC (K¼20) 65.48 (64.16–66.67) 37.91 (36.21–39.75) 0.10
LR-SMC (K¼20) 8.88 (8.45–9.32) 4.15 (3.65–4.62) 0.010 (0
parameters are due to the fact that they fail at discovering all the
modes of the target pdf. In order to clarify this issue, Fig. A1 shows
the evolution of the population of proposals for the first 4 itera-
tions of the standard PMC (K¼1), K-PMC (with K¼10), and DM-
PMC with global resampling (also for K¼1 and K¼10). Standard
PMC tends to concentrate the whole population on one or two
modes, very loosely covering the remaining ones and completely
missing the mode in the bottom right corner. This issue is partly
solved by using K¼10 (after 4 iterations the proposals are evenly
distributed around 3 out of the 5 modes) or DM-PMC with K¼1
(after 4 iterations the proposals are uniformly distributed among
4 out of the 5 modes). Combining both approaches (DM-PMC and
K¼10) an approximately uniform distribution of the proposals
around all the modes of the target is attained.

Finally, in Figs. 4 and 5 we explore a well-known problem of
PMC: the survival of proposals as the algorithm evolves. On the
one hand, Fig. 4 shows which proposals have been used to gen-
erate the starting population for the next iteration. After 6 itera-
tions, all of the N¼100 proposals in the population have arisen
from only 2 of the proposals in the initial population. This situa-
tion hardly improves by using the DM-PMC: now 4 initial propo-
sals have generated all the N¼100 proposals in the 6-th iteration.
However, by drawing multiple samples per mixand (K¼10) the
situation improves dramatically both when using the standard IS
weights (9 proposals survive until the 6-th iteration) and espe-
cially when using the DM-PMC (19 surviving proposals). On the
other hand, Fig. 5 shows the evolution in the survival rate of
proposals w.r.t. the distance in iterations (or generations). In
standard PMC, after very few iterations, most of the ancestors do
not survive. This rate falls down as t increases in all cases, but the
DM weights and especially the use of multiple samples per mix-
and help in slowing down this decrease. Therefore, we can con-
clude that the newly proposed schemes can be very useful in
preserving the diversity in the population of proposals.
e total number of evaluations of the target fixed to = = ·L KNT 2 105 in all algorithms.

σ = 10 σ = 20 σ = 70

0–19.04) 0.38 (0.28–0.53) 0.047 (0.033–0.065) 37.44 (21.01–55.62)
.04–16.57) 0.25 (0.21–0.30) 0.028 (0.023–0.033) 0.18 (0.15–0.22)
2–7.86) 0.25 (0.18–0.34) 0.033 (0.027–0.039) 0.17 (0.14–0.21)

1–6.33) 0.036 (0.030–0.043) 0.029 (0.024–0.034) 0.21 (0.18–0.25)
(1.88–4.69) 0.022 (0.019–0.027) 0.028 (0.022–0.033) 0.17 (0.14–0.21)
.008–0.012) 0.018 (0.014–0.022) 0.102 (0.084–0.122) 32.88 (27.89–38.69)
(0.03–0.25) 0.013 (0.011–0.016) 0.023 (0.018–0.027) 0.15 (0.12–0.17)
.005–0.012) 0.016 (0.013–0.019) 0.027 (0.021–0.033) 2.00 (1.52–2.60)
(0.03–1.18) 0.012 (0.010–0.014) 0.024 (0.020–0.029) 0.14 (0.12–0.17)
.008–0.014) 0.013 (0.011–0.016) 0.023 (0.019–0.028) 0.22 (0.18–0.26)
(0.02–0.20) 0.015 (0.011–0.018) 0.026 (0.021–0.030) 0.18 (0.15–0.21)
.016–0.029) 0.015 (0.012–0.018) 0.026 (0.022–0.032) 0.20 (0.16–0.24)
(0.06–0.10) 0.014 (0.011–0.016) 0.024 (0.019–0.030) 0.16 (0.14–0.20)
(0.06–0.14) 0.010 (0.008–0.013) 0.024 (0.018–0.030) 0.20 (0.16–0.25)

3.51–22.90) 0.058 (0.052–0.067) 0.031 (0.016–0.056) 0.14 (0.11–0.17)
2.58–10.45) 0.76 (0.15–1.71) 0.024 (0.021–0.027) 4.60 (1.64–8.51)
5.42–16.59) 0.79 (0.64–0.97) 0.068 (0.065–0.072) 0.86 (0.79–0.93)
8.86–36.70) 0.22 (0.14–0.31) 0.038 (0.019–0.061) 0.68 (0.39–1.03)

(1.72–2.15) 0.039 (0.037–0.040) 0.027 (0.026–0.029) 0.19 (0.18–0.19)
(0.15–0.18) 0.015 (0.014–0.016) 0.024 (0.023–0.025) 0.19 (0.19–0.20)

006–0.008) 0.015 (0.014–0.016) 0.027 (0.026–0.028) 2.19 (2.08–2.29)
(0.05–0.18) 0.013 (0.012–0.014) 0.025 (0.024–0.026) 0.19 (0.18–0.20)
.008–0.012) 0.014 (0.013–0.014) 0.026 (0.025–0.027) 0.20 (0.19–0.20)



Fig. 4. (Ex. of Section 5.2) Graphical representation of the indexes of the proposals used to generate the population for the next iteration with different schemes (6 iterations;
N¼100, σ = 5). For each pair of iterations, lines link each surviving proposal (“father” proposal) with the next generation. In red, proposals surviving from the 1st to the 6th
iteration. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5.3. High-dimensional example

We consider a target corresponding to a mixture of isotropic
Gaussians

∑ νπ Σ( ) = ( )
( )=

x x
1
3

; , ,
24k

k k
1

3

where ∈ x 10, ν ν ν= [ … ]⊤, ,k k k,1 ,10 , and ξΣ = Ik k
2

10 for ∈ { }k 1, 2, 3 ,
with I10 being the 10�10 identity matrix. We set ν = − 5j1, ,
ν = 6j2, , and ν = 3j3, for all ∈ { … }j 1, , 10 . Moreover, we set ξ = 8k

for all ∈ { }k 1, 2, 3 . The expected value of the target π ( )x is
[ ] =E Xj

4
3
for = …j 1, , 10, and the normalizing constant is Z¼1.

We use Gaussian proposal densities for all the compared
methods. The initial means (adaptive parameters of the proposals)
are selected randomly and independently in all techniques as
μ ∼ ([ − × ] )( ) 6 6i

1 10 for = …i N1, , . We use the same isotropic
covariance matrices for all the methods and proposal pdfs,

σ=C Ii
2

10, and we consider σ ∈ { }1, 5, 20 . For every experiment,
we run 200 independent simulations and compute the MSE in the
estimation of [ ]E X (averaging the MSE of each component). We
consider the same techniques as in the bi-dimensional example,
testing ∈ { }N 100, 1000 and different values of samples per
Fig. 5. (Ex. of Section 5.2) Survival rate (after resampling) of the proposals vs. the distanc
methods. (b) Different values of N, fixing NK¼1000 and thus ∈ { }N 100, 1000 .
iteration, ∈ { }K 2, 10, 20, 100 . We have tested different sets of
parameters, always keeping the total number of samples fixed to

= = ·L KNT 2 105. Moreover, in this example we implement another
variant of the SMC scheme [18], using a sequence of four tempered
target densities, π ( )( ) x1 , π ( )( ) x2 , π ( )( ) x3 and π π( ) = ( )( ) x x4 . These
auxiliary targets have the same form as in Eq. (24), where the
diagonal elements of each covariance matrix Σ( )

k
s , =s 1, 2, 3, 4 and

=k 1, 2, 3, are respectively ξ =( ) 16k
1 , ξ =( ) 12k

2 , ξ =( ) 9k
3 and, finally,

ξ =( ) 8k
4 (the true target). In addition, we also test this algorithm

with the residual sampling (see for instance [31,20]), instead of the
standard multinomial resampling.

Table 4 shows that the proposed PMC schemes outperform the
standard PMC in most of the cases. Indeed, a decrease of more
than one order of magnitude in the MSE can often be attained by
using DM-PMC with an appropriate value of K instead of the
standard PMC. Finally, note that, although M-PMC behaves well for
most of the parameters tested, overall the proposed methods yield
the best performance in terms of MSE and robustness w.r.t. para-
meter choice.

In order to study the performance of the proposed schemes as
the dimension of the state space increases, we change the di-
mension of the state space in (24). Namely, the target density is
e in iterations among the proposals averaged over 500 runs (s¼5). (a) N¼100 for all



Table 4

(Ex. of Section 5.3) MSE in the estimation of [ ]E X , for σ ∈ { }1, 5, 20 and ∈ { }K 2, 10, 20, 100 , keeping the total number of evaluations of the target fixed to = ·L 2 105. The
dimension space of the target is Dx¼10. The best results for each value of s are highlighted in bold-face.

Algorithm =N 100 =N 1000

σ = 1 σ = 5 σ = 20 σ = 1 σ = 5 σ = 20

Standard PMC [3] 12.43 (10.85–14.19) 8.11 (6.47–9.71) 1.24 (0.94–1.61) 12.68 (9.78–16.14) 5.94 (3.14–10.48) 0.53 (0.32–0.85)
GR-PMC (K¼2) 14.53 (13.29–16.07) 4.05 (2.52–6.24) 0.50 (0.43–0.58) 11.90 (7.86–17.65) 0.01 (0.01–0.02) 0.15 (0.12–0.20)
LR-PMC (K¼2) 11.55 (9.11–14.29) 12.77 (9.21–15.36) 78.31 (67.67–86.79) 2.52 (1.69–3.39) 0.82 (0.50–1.27) 29.44 (20.52–37.92)
GR-PMC (K¼10) 13.02 (11.69–14.48) 0.91 (0.48–1.58) 0.22 (0.20–0.24) 3.57 (1.82–6.37) 0.10 (0.00–0.27) 0.19 (0.14–0.25)
LR-PMC (K¼10) 8.15 (6.44–10.81) 0.21 (0.13–0.30) 1.85 (1.56–2.12) 4.34 (2.62–6.86) 0.01 (0.00–0.01) 1.61 (1.06–2.12)
GR-PMC (K¼20) 10.89 (9.82–11.92) 0.74 (0.35–1.32) 0.23 (0.20–0.26) 5.45 (2.49–9.43) 0.05 (0.02–0.09) 0.12 (0.08–0.16)
LR-PMC (K¼20) 6.92 (5.56–8.35) 0.16 (0.11–0.25) 0.77 (0.68–0.87) 4.59 (2.15–8.21) 0.04 (0.02–0.08) 0.55 (0.42–0.65)
GR-PMC (K¼100) 7.61 (6.57–8.60) 0.16 (0.10–0.29) 0.17 (0.15–0.18) 5.71 (3.28–9.78) 0.65 (0.15–1.46) 0.10 (0.07–0.14)
LR-PMC (K¼100) 7.05 (4.99–8.73) 0.41 (0.09–0.99) 0.28 (0.24–0.33) 5.48 (3.01–9.12) 0.17 (0.10–0.28) 0.19 (0.15–0.23)
M-PMC [14] 10.78 (9.53–19.78) 9.06 (4.40–12.72) 0.35 (0.20–0.64) 3.28 (2.77–4.88) 0.12 (0.07–0.50) 0.07(0.05–0.12)
SMC [18] 4.99 (3.40–6.87) 0.92 (0.67–1.12) 0.45 (0.35–0.58) 11.45 (7.39–15.67) 1.75 (1.20–2.50) 0.38 (0.25–0.54)
SMC with tempering [18] 3.80 (2.76–4.90) 0.56 (0.48–0.65) 0.41 (0.29–0.50) 7.04 (4.75–9.82) 1.64 (1.12–2.03) 0.51 (0.41–0.67)
SMC with tempering and residual resam-
pling [18]

2.79 (2.53–3.15) 0.54 (0.50–0.57) 0.26 (0.24–0.27) 7.29 (6.73–7.83) 1.24 (1.16–1.35) 0.43 (0.40–0.47)

Fig. 6. (Ex. of Section 5.3) MSE of the normalizing constant Z, using N¼100 pro-
posals and a scale parameter σ = 5, as the dimension of the state space Dx increases.

6 For the generation of i.i.d. samples of the generalized hyperbolic noise, we
applied a fast and efficient MCMC technique (the FUSS algorithm [38]), drawing
samples from univariate distributions. After a few iterations, the resulting samples
were virtually independent.
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still a mixture of three isotropic Gaussians with the same structure
for the mean vectors and covariance matrices as before, but now
the dimension of x is ∈ [ ]D 1, 50x . We have tested all the methods
with σ = 5 and N¼100. Fig. 6 shows the evolution of the MSE in
the estimation of the normalizing constant as a function of Dx. As
expected, the performance of all the methods degrades as the
dimension of the problem, Dx, becomes larger. Nonetheless, the
performance of the proposed methods decays much more slowly
than that of the standard PMC, thus allowing them to still provide
a reasonably low MSE in higher dimensions. Note that, since the
true normalizing constant of the target is Z¼1, when the methods
behave poorly in high dimensions and the proposals do not dis-

cover the modes, the estimation is ^ ≈Z 0, and therefore the MSE
tends to 1, which is the worst-case situation.

5.4. Autoregressive filter with non-Gaussian noise

We consider the use of an autoregressive (AR) model con-
taminated by a non-Gaussian noise.

This kind of filters is often used for modeling some financial
time series (see for instance [34, Section 5] and [35]), where the
noise is assumed to follow the so-called generalized hyperbolic
distribution [36]. Namely, we consider the following observation
model,

= + + + + ( )− − − −y x y x y x y x y u , 25m m m m m m1 1 2 2 3 3 4 4

where = …m M1, , is a time index, and um is a heavy-tailed
driving noise:

( )
( )

α δ μ

δ μ
∼ ( ) ∝

+ ( − )

+ ( − )

β μ
λ

λ
( − )

−

−
u p u e

B u

u
,m

u

2 2

2 2

1
2

1
2

where λB denotes the modified Bessel function [37]. The vector of
unknowns, * = [ * * * *]⊤x x x xx , , ,1 2 3 4 , contains the coefficients of the AR
model.

Given a set of observations = [ … ]⊤y yy , , M1 , the inference pro-
blem consists of obtaining statistical information about *x , by
studying the corresponding posterior distribution π̃( | )x y . More
specifically, we have synthetically generated M¼200 observations,

= [ … ]⊤y yy , , M1 , setting * = [ − ]⊤x 0.5, 0.1, 0.8, 0.1 , λ = 0.5, α = 2,
β = 1, μ = − 1, and δ = 1.6 Assuming improper uniform priors over
the unknown coefficients, the objective is computing the expected
value ∫ π^ = ˜( | )


dx x x y x4 . Since we are using M¼200 observations

(a large number for this example), we assume that the posterior
pdf is quite sharp and concentrated around the true value,

* = [ − ]⊤x 0.5, 0.1, 0.8, 0.1 . Nevertheless, in practice we assume that
the inference algorithms have no clue of which is that true value
(i.e., we assume no a priori information). Therefore, *x is only used
for evaluating the performance of the different methods in terms
of MSE.

All the methods use Gaussian proposals, with the initial
adaptive parameters of the individual proposals selected uni-
formly within the [ − ]6, 6 4 square, i.e.,
μ ∼ ([ − ] × [ − ] × [ − ] × [ − ])( ) 6, 6 6, 6 6, 6 6, 6i

1 , and the covar-
iance matrices for all the Gaussians selected as σ=C Ii

2
4, with

σ = 5 for = …i N1, , . As in the previous examples, we have tested
different combinations of parameters, keeping the total number of
evaluations of the target fixed to = = ·L NKT 2 105. We have
evaluated different values of ∈ { }N 100, 1000, 5000 and



Table 5
(Ex. of Section 5.4) MSE of [ ]E X for different values of K and N, keeping the total number of

evaluations of the target fixed to = = ·L KNT 2 105. The symbol * indicates combinations where
the number of iterations <T 1, and therefore they cannot be performed.

Algorithm =N 100 =N 1000 =N 5000

Standard PMC [3] 13,615.95 (13,197.39–15021.45) 69.99 (62.23–72.24) 0.56 (0.56–0.68)
GR-PMC (K¼5) 1597.57 (1516.26–1727.82) 1.92 (1.72–2.22) 0.08 (0.07–0.10)
LR-PMC (K¼5) 31.04 (28.99–33.33) 0.36 (0.33–0.40) 0.20 (0.15–0.24)
GR-PMC (K¼10) 520.62 (472.44–558.27) 0.30 (0.26–0.40) 0.07 (0.05–0.10)
LR-PMC (K¼10) 14.99 (14.06–15.99) 0.29 (0.28–0.32) 0.21 (0.14–0.27)
GR-PMC (K¼50) 16.91 (15.43–20.42) 0.05 (0.04–0.08) *
LR-PMC (K¼50) 1.89(1.61–2.12) 0.15 (0.14–0.21) *
GR-PMC (K¼100) 2.23 (1.74–3.39) 0.10 (0.06–0.13) *
LR-PMC (K¼100) 0.77 (0.62–0.90) 0.17 (0.09–0.18) *
M-PMC [14] 182.10 (64.29–16.59) 0.07 (0.06–0.09) 0.05 (0.04–0.07)

Table 6
(Ex. of Section 5.5) MSE of the estimator of [ ]E X with different PMC algorithms.

Algorithm =N 100 =N 500

σ = 1 σ = 2 σ = 1 σ = 2

Standard PMC [3] 621.85 (542.98–685.76) 2424.35 (1916.39–2995.05) 167.52 (33.10–376.49) 756.46 (490.36–1077.76)
GR-PMC (K¼20) 7.51 (5.83–8.97) 28.02 (23.15–33.41) 0.87 (0.11–1.86) 9.30 (3.33–14.30)
LR-PMC (K¼20) 0.59 (0.50–0.68) 1.27 (0.89–1.65) 0.25 (0.10–0.54) 0.40 (0.35–0.45)
GR-PMC (K¼50) 1.82 (1.50–2.26) 7.00 (5.30–8.56) 0.52 (0.39–0.69) 1.72 (0.19–3.56)
LR-PMC (K¼50) 0.37 (0.32–0.44) 0.88 (0.70–1.04) 0.25 (0.13–0.32) 0.38 (0.30–0.47)
GR-PMC (K¼100) 0.74 (0.63–0.88) 1.66 (1.31–2.05) 0.32 (0.17–0.48) 0.80 (0.51–0.99)
LR-PMC (K¼100) 0.28 (0.25–0.33) 0.48 (0.39–0.58) 0.23 (0.14–0.33) 0.11 (0.11–0.11)
GR-PMC (K¼200) 0.43 (0.36–0.51) 0.57 (0.45–0.66) 0.36 (0.22–0.48) 0.23 (0.01–0.35)
LR-PMC (K¼200) 0.26 (0.23–0.29) 0.35 (0.28–0.42) 0.16 (0.12–0.20) 0.37 (0.37–0.37)
M-PMC [14] 7.75 (6.76–7.73) 32.77 (28.34–37.19) 1.07 (0.82–1.33) 1.66 (1.48–1.84)
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∈ { }K 5, 10, 50, 100 . We ran 500 independent simulations and
computed the MSE in the estimation of x̂ w.r.t. the true value *x .

The results obtained by the different methods, in terms of MSE
averaged over all the components of x, are shown in Table 5. Note
that some combinations of K and N would yield a number of
iterations <T 1, since we set = ( ) = · ( )T L NK NK/ 2 10 /5 . Therefore,
those simulations cannot be performed and are indicated in the
table with the symbol *. Note that, for any choice of N, the alter-
native schemes proposed in the paper largely outperform the
standard PMC. Furthermore, the advantage of using >K 1 can
again be clearly seen for the three values of N tested. More spe-
cifically, the smallest the value of N the largest the value of K that
should be used to attain the best results. Note also that M-PMC
behaves particularly well in this scenario for high values of N, but
its performance is very poor for N¼100 (unlike GR-PMC and LR-
PMC, which can still provide a good performance for the right
value of K).
5.5. Localization problem in a wireless sensor network

Let us consider a static target in a two-dimensional space. The
goal consists on positioning the target within a wireless sensor
network using only range measurements acquired by some sen-
sors. This example appears in the signal processing literature for
localization applications, e.g. in [39–41,17]. In particular, let

= [ ]⊤X XX ,1 2 denote the random vector representing the position of
the target in 2 plane. The measurements are obtained from
6 range sensors located at = [ − ]⊤h 1, 81 , = [ ]⊤h 8, 102 ,

= [ − − ]⊤h 15, 73 , = [ − ]⊤h 8, 14 , = [ ]⊤h 10, 05 and = [ ]⊤h 0, 106 .
The measurements are related to the target position through the
following expression:

( ) Θ= − ∥ − ∥ + = … = … ( )Y j r dx h20 log , 1, , 6, 1, , , 26j r j j y,
2

where θΘ ω∼ ( | )0 I,j j j
2 , with ω = 5j for all ∈ …j 1, , 6. Note that

the total number of data is 6dy. We consider a wide Gaussian prior
pdf with mean [ ]⊤0, 0 and covariance matrix ω ω[ ]⊤0; 00

2
0
2 with

ω = 100 ,
We simulate =d6 360y measurements from the model (dy¼60

observations from each sensor), fixing x1¼3.5 and x2¼3.5.
The goal consists in approximating the mean of the posterior
distribution π̄ ( | )x y , through the improved PMC techniques pro-
posed in this paper. In order to compare the different techniques,
we computed the value of interest by using an extremely thin grid,
yielding [ ] ≈ [ ]⊤E X 3.415, 3.539 .

We test the proposed methods and we compare them with the
standard PMC [3] and the M-PMC [14]. In all cases, Gaussian
proposals are used, with initial mean parameters selected uni-
formly within the [ ] × [ ]1, 5 1, 5 square, i.e.,
μ ∼ ([ − ] × [ − ])( ) 1, 5 4, 4i

1 for = …i N1, , . All the methods use
the same isotropic covariance matrices for all the Gaussian pro-
posals, σ=C Ii

2
2 with σ ∈ { }1, 2 . We have tried ∈ { }N 100, 500

proposals. In the proposed methods, we test the values
∈ { }K 20, 50, 100, 200 . Note that again, we keep fixed the total

number of evaluations to = = ·L KNT 2 105.
Table 6 shows the MSE in estimation of the expected value of

the posterior, with the different PMC methods. Again, the pro-
posed methods largely beat the standard PMC for all the sets of
parameters. The M-PMC algorithm is again competitive (especially
with N¼500), but the proposed algorithms obtain better perfor-
mance (in particular, the LR-PMC with a high K).
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6. Conclusions

The population Monte Carlo (PMC) method is a well-known
and widely used scheme for performing statistical inference in
many signal processing problems. Three improved PMC algorithms
are proposed in this paper. All of them are based on the de-
terministic mixture (DM) approach, which provides estimators
with a reduced variance (as proved in this paper) and increases the
exploratory behavior of the resulting algorithms. Additionally, two
of the methods draw multiple samples per mixand (both with
local and global resampling strategies) to prevent the loss of di-
versity in the population of proposals. The proposed approaches
are shown to substantially outperform the standard PMC on three
numerical examples. The proposed improvements can be applied
to other existing PMC implementations and other importance
sampling techniques, to achieve similar benefits.
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Appendix A. Standard vs. deterministic mixture importance
sampling

In this appendix we review the IS estimators, analyzing the
properties (unbiasedness and variance) of the estimator with the
DM weights. For the sake of clarity, we remove the temporal in-
dexes (see Fig. A1).

A.1. Importance sampling estimators

Let us consider the estimator of Eq. (9) when we have a set of N
proposal pdfs, { ( )} =q xi i

N
1. We draw exactly Ki¼1 sample from each

proposal, i.e., ∼ ( )qx xi i for = …i N1, , .7 If the normalizing constant
Z is known, the IS estimator is then

∑^ = ( )
( )=

I
NZ

w f x
1

.
A.1i

N

i i
1

The difference between the standard and deterministic mixture
(DM) IS estimators lies in the computation of the unnormalized
weights. On the one hand, we recall the standard IS weights are
given by

π= ( )
( ) ( )

w
q

x
x

,
A.2

i
i

i i

where π ( )xi is the target evaluated at the i-th sample (drawn from
the i-th proposal). Substituting (A.2) into (A.1), we obtain the
standard IS estimator,

∑ π^ = ( ) ( )
( ) ( )=

I
NZ

f
q
x x

x
1

.
A.3

IS
i

N
i i

i i1
7 From now on, we use Ki¼1, with = …i N1, , , for the sake of clarity, but the
analysis can be straightforwardly extended to any Ki.
On the other hand, the weights in the DM approach are given by

π= ( )
∑ ( ) ( )=

w
q

x

x
.
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Substituting (A.4) into (A.1) we obtain the DM estimator

∑ π^ = ( ) ( )

∑ ( ) ( )
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A.2. Unbiasedness of the DM-IS estimator

It is well known that ÎIS in Eq. (A.3) is an unbiased estimator of
the integral I define in Eq. (2) [1,19]. In this section, we prove that
the DM-IS estimator in Eq. (A.5) is also unbiased. Since ∼ ( )qx xi i ,
we have

∑ π[^ ] = ( ) ( )

∑ ( )
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∫ π= ( ) ( ) = ( )Z
f d Ix x x

1
. A.9□

A.3. Variance of the DM-IS estimator

In this section, we prove that the DM-IS estimator in Eq. (A.5)
always has a lower or equal variance than the standard IS esti-
mator of Eq. (A.3). We also consider the standard mixture (SM)

estimator ÎSM , where N samples are independently drawn from the
mixture of proposals, i.e., ∼ ∑ ( )= qz xi N j

N
j

1
1 , and

∑ π^ = ( ) ( )

∑ ( ) ( )
=

=

I
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z z
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Note that obtaining an IS estimator with finite variance essentially
amounts to having a proposal with heavier tails than the target.
See [1,42] for sufficient conditions that guarantee this finite
variance.

Theorem 1. For any target distribution, π ( )x , any square integrable
function w.r.t. π ( )x , ( )f x , and any set of proposal densities, { ( )} =q xi i

N
1,

such that the variance of the corresponding estimators is finite, the
variance of the DM estimator is always lower or equal than the
variance of the corresponding standard IS and mixture (SM) esti-
mators, i.e.,

(^ ) ≤ (^ ) ≤ (^ ) ( )Var I Var I Var I . A.11DM SM IS

Proof. The proof is given by Propositions 2 and 3. □

Proposition 2.

(^ ) ≤ (^ ) ( )Var I Var I . A.12SM IS

Proof. The variance of the IS estimator is given by



Fig. A1. (Ex1-Section 5.2) Evolution of the samples before (red crosses) and after resampling (black circles) for different schemes using N¼100 and σ = 5. The contour lines
of the target density are also depicted. (a) Standard PMC. (b) DM-PMC (K¼1). (c) K-PMC (K¼10) with global resampling. (d) GR-PMC (K¼10). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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where ∫ π= ( ) ( )I f dx x x
Z
1 is the true value of the integral that we

want to estimate [29]. The variance of the SM estimator is given by
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where ψ ( ) = ∑ ( )= qx x
N j

N
j

1
1 . Subtracting (A.14) and (A.13), we get
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Hence, since π( ) ( ) ≥ ∀f x x x02 2 , in order to prove the theorem it
is sufficient to show that

∑
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Now, let us note that the left hand side of (A.15) is the inverse of
the arithmetic mean of ( ) … ( )q qx x, , N1 ,

∑= ( )
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whereas the right hand side of (A.15) is the inverse of the har-
monic mean of ( ) … ( )q qx x, , N1 ,

∑=
( )=H N q x

1 1 1
.

N i
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Therefore, the inequality in (A.15) is equivalent to stating that

≤
A H
1 1

N N
, or equivalently ≥A HN N , which is the well-known ar-

ithmetic mean–harmonic mean inequality for positive real num-
bers [27,37]. Note that (A.15) can also be proved using Jensen's

inequality in Eq. (16) with φ ( ) =x
x
1 , α =i N

1 and = ( )z q xi i for

= …i N1, , . □

Proposition 3.

(^ ) ≤ (^ ) ( )Var I Var I . A.16DM SM

Proof. The variance of ÎDM is computed
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Analyzing Eqs. (A.14) and (A.17), we see that proving

(^ ) ≤ (^ )I IVar VarDM SM is equivalent to proving that
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By defining ∫= ( ) = ( )π
ψ
( ) ( )

( )a a q dx x xi i
f

i
x x

x
, (A.18) can be expressed

more compactly as
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The inequality in Eq. (A.19) holds, since it corresponds to the de-
finition of the Cauchy–Schwarz inequality [27],
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with bi¼1 for = …i N1, , . Once more, (A.18) can also be proved by
using Jensen's inequality in (16) with φ ( ) =x x2, α =i N

1 and
= ( )z a xi i for = …i N1, , . □
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