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Clustering

I Now, an unsupervised task.

I we have just xi ...

I We will see the k-means algorithm which is, in
my opinion, the unsupervised version of the
Nearest Neighbors (NNs) method.

I in this slides: number of data N .
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What is clustering?

Find the groups of samples and, if it is possible,
The number of groups.
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Type of clusters.... infinite....
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Examples of application

Segmentation
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Examples of application

Segmentation
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Examples of application
Segmentation
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Examples of application
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Main families of clustering algorithms

(a) partitional (partitioning) clustering
(b) hierarchical clustering etc...
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The most famous clustering algorithm

The k-means algorithm.

k is the number of clusters....

Note that
1 ≤ k ≤ N

If we set k = N , each data should be a cluster....
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k-means algorithm

- Fix a number k (of clusters).

- Start randomly, choosing the positions of k
centroids.

- Assign samples/data to each centroid as function
of some distance.

- Move the centroids, doing the arithmetic means of
the assigned samples/data....
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k-means algorithm: starting ....

Fix a number k (of clusters).
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k-means algorithm: assignment/distribution step
according to the distances....
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k-means algorithm: moving step according to the
means of the assigned samples...
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k-means algorithm: again, assign ...
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k-means algorithm: and move... and repeat...
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Possible results

17 / 53



Are we minimizing a cost function? Yes...

We are minimizing the sum of the distances
“inside each cluster”
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Relationship with density estimation

We are minimizing the sum of the distances
“inside each cluster”

This is related to density estimation, and
variances (of components within a mixture of
densities )....

It is can be shows that we are looking for a “good”
mixture of Gaussians describing the data....
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“Variance” inside the cluster

If the distance is Euclidean, we are minimizing
the “variance” inside the cluster.

“... the basic idea behind partitioning methods,
such as k-means clustering, is to define clusters
such that the total intra-cluster variation (or total
within-cluster sum of square) is minimized.”
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“Variance” inside the cluster

If the distance is Euclidean, we are minimizing
the “variance” inside the cluster.

j-th centroid cj of the j-th cluster Cj , then we want
to minimize

Var[x ∈ Cj ] = variance inside Cj ≈
1

|Cj |
∑
i∈Cj

||xi − cj ||2.
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“Law of Total Variance”....
Clear the mean of all the centroids is the mean of the data

µ =
1

k

k∑
j=1

cj =
1

k

k∑
j=1

 1

|Cj |
∑
i∈Cj

xi

,
=

1

N

M∑
i=1

xi ,

Law of Total Variance:

Var[x] =

(
k∑

j=1

Var[inside the cluster Cj ]

)
+ Var[of “centroids”],

=
k∑

j=1

Var[x ∈ Cj ]︸ ︷︷ ︸
internal

+
k∑

j=1

||cj − µ||2︸ ︷︷ ︸
among the centroids

.
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“Law of Total Variance”....

as a consequence:

Var[x] ≥
k∑

j=1

Var[x ∈ Cj ]

and it is also valid for the approximations:

1

N

N∑
i=1

||xi − µ||2 ≥
k∑

j=1

 1

|Cj |
∑
i∈Cj

||xi − cj ||2


Recall that

µ =
1

k

k∑
j=1

cj =
1

k

k∑
j=1

 1

|Cj |
∑
i∈Cj

xi


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as k grows...

Considering that k grows approaching N :

k∑
j=1

Var[x ∈ Cj ]→ 0,

and
k∑

j=1

||cj − µ||2 → Var[x].

When k = N (with a proper clustering: each data is
a cluster),

k∑
j=1

Var[x ∈ Cj ] = 0,
k∑

j=1

||cj − µ||2 = Var[x].
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when k = 1...

When k = 1: all the data in one unique cluster,

k∑
j=1

Var[x ∈ Cj ] = Var[x ∈ C1] = Var[x],

k∑
j=1

||cj − µ||2 = ||c1 − µ||2 = 0.
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The k-means algorithm is a parametric method

I Note that the k-means algorithm is a
parametric method.

I We fix k and then decide....
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How many clusters? starting with k = 2 and then
increase k...
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How many clusters? starting with k = 2 and then
increase k...

28 / 53



How many clusters? starting with k = 2 and then
increase k...
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and then use some criterium for the “optimal
performance”...

Note that
1 ≤ k ≤ N

With k = N, each data is a cluster....
(k = 1 could/should be underfitting)
(k = N could/should be overfitting)

However, in this unsupervised case, it is not “easy”,
straightforward, to apply Cross-Validation (CV)
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and then use some criterium for the “optimal
performance”...

- We could use “marginal likelihood with
probabilistic approaches.....”
- Now we will see two methods:

I Elbow method + AIC (Akaike information
criterion)

I Silhouette method
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Elbow method + AIC (for deciding k...)

Find k∗ which minimizes the following cost function

Cost(k) =
k∑

j=1

Var[x ∈ Cj ] + k

Cost(k) =
k∑

j=1

Var[x ∈ Cj ]︸ ︷︷ ︸
fitting

+ k︸︷︷︸
model penalty (AIC)

When k grows: the first term
∑k

j=1 Var[x ∈ Cj ]
decreases, and the model penalty grows (k)

32 / 53



Silhouette method (for deciding k...)

I Consider the `-th cluster C`.
I For each i -th point in the `-th cluster C`, then

i = 1, ..., |C`|, we compute

a(i) =
1

|C`| − 1

∑
j∈C`;j 6=i

d(i , j).
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Silhouette method (for deciding k...)

I a(i) measures how dissimilar is i-th data to
its own cluster....

I high a(i) ==> great dissimilarity
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Silhouette method (for deciding k...)

I For each i -th point in the `-th cluster C`, then
i = 1, ..., |C`|, we also compute

ψ(i , k) =
1

|Ck |
∑
j∈Ck

d(i , j), with k 6= `.

b(i) = min
k
ψ(i , k), with k 6= `.
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Silhouette method (for deciding k...)

I high b(i) ==> the other clusters are different
and do not explain the i -th data; the i -th data is
not similar to other cluster ....
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Silhouette method (for deciding k...)
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Silhouette method (for deciding k...)

I s(i) ≈ 1 then the i-th data has been properly clustered.

I s(i) ≈ 0 then the i-th data could belong to different
clusters....

I s(i) ≈ −1 then the i-th data should belong to another
cluster....
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Silhouette method (for deciding k...)
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Silhouette method (for deciding k...)

Consider the mean s(i) inside one cluster C`,

s̄` =
1

|C`|
∑
i∈|C`|

s(i).

if s̄` is high ==> the points in the cluster are
well-grouped ( i punti del cluster C` sono
effettivamente simili tra loro)
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Silhouette method (for deciding k...)

Consider now the mean of s(i) over all the clusters,

s̃(k) =
1

k

k∑
`=1

s̄` =
1

k

k∑
`=1

 1

|C`|
∑
i∈|C`|

s(i)

 .

=
1

N

N∑
i=1

s(i),

is a measure of how our clustering is “good”.

Note that s̃(k) depends on the number of clusters
that we choose at the beginning.
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Silhouette method (for deciding k...)

Choose the number of clusters such that

k∗ = arg max
k

s̃(k).

Recall that s̃(k) represents the mean of the s(i)
over all the data of the entire dataset for a specific
number of clusters k .
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(agglomerative) Hierarchical clustering

we always consider the two closest “clusters”
or “super-clusters”.
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Hierarchical clustering

different resolutions....
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Hierarchical clustering

45 / 53



Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
How do you consider a “distance” between clusters?
(linkage)
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering

Better with non-convex stuffs....
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