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Clustering

» Now, an unsupervised task.
» we have just Xx;...

» We will see the k-means algorithm which is, in
my opinion, the unsupervised version of the
Nearest Neighbors (NNs) method.

» in this slides: number of data .



What is clustering?
Find the groups of samples and, if it is possible,
The number of groups.
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Type of clusters.... infinite....
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Examples of application

Segmentation




Examples of application
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Examples of application
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Examples of application

/ "
'# the o4



Main families of clustering algorithms

(a) partitional (partitioning) clustering
(b) hierarchical clustering etc...

Las dos familias principales de algoritmos de agrupamiento, son:
= Agrupamiento particional (se suele fijar k, el nUmero de grupos)

SEm o)

» Agrupamiento jerarquico (no se fija k)



The most famous clustering algorithm

The k-means algorithm.
k is the number of clusters....
Note that

1<k<N
If we set k = N, each data should be a cluster....



k-means algorithm

- Fix a number k (of clusters).

- Start randomly, choosing the positions of k
centroids.

- Assign samples/data to each centroid as function
of some distance.

- Move the centroids, doing the arithmetic means of
the assigned samples/data....



k-means algorithm: starting ....

Fix a number k (of clusters).

Ejemplo del algoritmo k-medias (k-means) con k=3
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k= 3 centroides: k1, k2, k3



k-means algorithm: assignment/distribution step
according to the distances....
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Se asigna cada muestra al centroide mas cercano.
Cada color representa un cluster distinto.



k-means algorithm: moving step according to the
means of the assigned samples...
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Se recalcula la posicion de cada centroide como el promedio de las
muestras/observaciones/ejemplos de cada cluster.



k-means algorithm: again, assign ...
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Las tres musstras
que cambian de grupo 4

Se reasignan las muestras al centroide mas cercano



k-means algorithm: and move... and repeat...

Recalcular los centros de los clusters
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Reasignar las muestras al cluster mas cercano ..

El criterio para detener el algoritmo puede ser un numero maximo de iteraciones, la
estabilizacion en la posicioén de los centroides, ...



Possible results
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Posible resultado
proporcionado por k-means



Are we minimizing a cost function? Yes...

We are minimizing the sum of the distances
“inside each cluster”

Al considerar la distancia Euclidea y la media aritmética, se esta minimizando la variaciéon
intra-cluster. Esta medida se usa, por tanto, como criterio del grado de ajuste (cohesion y

separacién) de los centroides.

Ejemplo con observaciones de tres
dimensiones

Minimizar
distancia

intra-cluster
(cohesidn)

Maximizar
distancia
inter-cluster
(separacion)

Funcion a optimizar

>

i=1

T 24 (xe)

XEC;

|.| Cardinalidad del conjunto
(numero de observaciones)
C;: cluster i-ésimo

¢ centroide i-esimo I



Relationship with density estimation

We are minimizing the sum of the distances
“inside each cluster”

This is related to density estimation, and
variances (of components within a mixture of
densities )....

It is can be shows that we are looking for a “good”
mixture of Gaussians describing the data....



“Variance” inside the cluster

If the distance is Euclidean, we are minimizing
the “variance” inside the cluster.

“... the basic idea behind partitioning methods,
such as k-means clustering, is to define clusters
such that the total intra-cluster variation (or total

within-cluster sum of square) is minimized.”



“Variance” inside the cluster
If the distance is Euclidean, we are minimizing
the “variance” inside the cluster.

J-th centroid c; of the j-th cluster C;, then we want

to minimize
Z Ixi — ¢l >

Var[x € Cj] = variance inside C; =~
‘ J‘ IGC



“Law of Total Variance”....
Clear the mean of all the centroids is the mean of the data

1/( k
Ho= kz Z |C|ZX' ’

j=1 ieC;
M
>
= Xj,
N i=1
Law of Total Variance:

k
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“Law of Total Variance”....
as a consequence:

k
Var[x] > ZVar[x e G
j=1

and it is also valid for the approximations:

_ZHXI IJ’H2 Z ‘C‘ZHXI CJH2

j=1 ieC

Recall that



as k grows...
Considering that k grows approaching N:

k
ZVar[x e G] —0,
j=1

and
k

> llgj — mll* — Var[x].

j=1
When k = N (with a proper clustering: each data is
a cluster),

k k
ZVar[x € G] =0, Z l|c; — p|[* = Varlx].
j=1 j=1



when kK = 1...

When k = 1: all the data in one unique cluster,

k
ZVar[x € G| = Var[x € (] = Var[x],
j=1

k

> llej = PP = [ler — pl]> = 0.

Jj=1



The k-means algorithm is a parametric method

» Note that the k-means algorithm is a
parametric method.

» We fix k and then decide....



How many clusters?
increase k...

starting with kK = 2 and then
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How many clusters? starting with kK = 2 and then
increase k...
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How many clusters? starting with kK = 2 and then
increase k...

o ‘_.:wn ‘.;’n
— ] apey o TR e
i . ko o] Y G o
T R N N e W
1| K £x 2 X 0, A 3
45 -1 5| -15
' . -
s Jaal aalt
- A - A = A
T, o3 3 S
5 o] 5 0 5 n “as 10 5 [] [ ) i B 5 [ 5 g

29 /53



and then use some criterium for the “optimal
performance”...

Note that
1<k<N

With k = N, each data is a cluster....
(k =1 could/should be underfitting)

(k = N could/should be overfitting)

However, in this unsupervised case, it is not “easy”,

straightforward, to apply Cross-Validation (CV)



and then use some criterium for the “optimal
performance”...

- We could use “marginal likelihood with
probabilistic approaches.....”
- Now we will see two methods:
» Elbow method + AIC (Akaike information
criterion)

» Silhouette method



Elbow method + AIC (for deciding k...)

Find k* which minimizes the following cost function

Cost(k ZVar[x € Gl +k

Jj=1
Cost(k ZVar[x e G+ k
model penalty (AIC)
flttlng

When k grows: the first term Zjlle Var[x € ]
decreases, and the model penalty grows (k)



Silhouette method (for deciding k...)

» Consider the /-th cluster C;.
» For each i-th point in the /-th cluster C;, then
i=1,.. |G|, we compute




Silhouette method (for deciding k...)

» a(/) measures how dissimilar is /-th data to
its own cluster....

» high a(i) ==> great dissimilarity



Silhouette method (for deciding k...)
» For each i-th point in the /-th cluster C;, then

i=1,.., Gl we also compute
: 1 - :
w(/,k):mZd(/,j), with k # (.
JeCk

b(i) = mkin W(i, k), with k #¢.




Silhouette method (for deciding k...)

» high b(i) ==> the other clusters are different
and do not explain the /-th data; the /-th data is
not similar to other cluster ....



Silhouette method (for deciding k...)

We now define a silhouette (value) of one data point %
+ b(i) — ali)
s(1) =

max{a(i), b(i)}’
and

S(3J = D, if |Ci| = 1
Which can be also written as:

{ 1—a(i)/b(i), ifa(i) < b(i)

if |C;] > 1

s(i) = < 0, if a(i) = b(1)

b(i)/a(i) — 1, ifa(i) > b(i)
From the above definition it is clear that

~1<s(i) <1



Silhouette method (for deciding k...)

Also, note that score is O for clusters with size = 1. This constraint is added to prevent the number of clusters from increasing
significantly.

For s(i) to be close to 1 we require a(i) & b(t] As a[i) is a measure of how dissimilar i is to its own cluster, a small value means it
is well matched. Furthermore, a large b(z) implies that ¢ is badly matched to its neighbouring cluster. Thus an s(t‘) close to one
means that the data is appropriately clustered. If s(i) is close to negative one, then by the same logic we see that ¢ would be more
appropriate if it was clustered in its neighbouring cluster. An s(i) near zero means that the datum is on the border of two natural
clusters.

» s(i) = 1 then the i-th data has been properly clustered.

» s(i) ~ 0 then the i-th data could belong to different
clusters....

» s(i) &~ —1 then the i-th data should belong to another
cluster....



Silhouette method (for deciding k...)

Plot
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termite
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ladybird
honeybec

porpoise
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Silhouette method (for deciding k...)

Consider the mean s(i) inside one cluster

if 5y is high ==> the points in the cluster are
well-grouped (i punti del cluster C; sono
effettivamente simili tra loro)



Silhouette method (for deciding k...)

Consider now the mean of s(i) over all the clusters,

1 < 1<
s(k) = ;ZQZ;Z TZ s(/)

is a measure of how our clustering is “good”.

Note that s(k) depends on the number of clusters
that we choose at the beginning.



Silhouette method (for deciding k...)

Choose the number of clusters such that
k* = arg mfx?(k).

Recall that s(k) represents the mean of the s(i)
over all the data of the entire dataset for a specific
number of clusters k.



(agglomerative) Hierarchical clustering

we always consider the two closest “clusters”
or “super-clusters”.

Hierarchical clustering starts by treating each observation as a separate cluster. Then, it
repeatedly executes the following two steps: (1) identify the two clusters that are closest
together, and (2) merge the two most similar clusters. This iterative process continues until all

the clusters are merged together. This is illustrated in the diagrams below.



Hierarchical clustering

different resolutions....

Dendrogram

G et

B
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Hierarchical clustering




Hierarchical clustering

The main output of Hierarchical Clustering is a dendrogram, which shows the hierarchical
relationship between the clusters:

Dendrogram
B D g




Hierarchical clustering

The hierarchical clustering dendrogram would be as such:
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Traditional representation



Hierarchical clustering

Agglomerative versus divisive algorithms

Hierarchical clustering typically works by sequentially merging similar clusters, as shown
above. This is known as agglomerative hierarchical clustering. In theory, it can also be done by
initially grouping all the observations into one cluster, and then successively splitting these
clusters. This is known as divisive hierarchical clustering. Divisive clustering is rarely done in
practice.
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Hierarchical clustering




Hierarchical clustering
How do you consider a “distance” between clusters?
(linkage)
Single-link Complete-link

Minima distancia/disimilitud inter-cluster Maxima distancia/disimilitud infer-cluster

Average Centroids

Distancia/disimilitud media inter-cluster Disimilitud o distancia entre centroides
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Hierarchical clustering




Hierarchical clustering

Better with non-convex stuffs....
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Agrupamiento jerarquico 2-medias
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