Spectral Analysis of x(t)=1 and x[n]=1 (and more considerations)

Linear systems and circuit applications
Discrete Time Systems

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u> Laura Cornejo — <u>laura.cornejo@urjc.es</u>

Consider the signal x(t)=1:

- Say which mathematical tools can you apply in a transformed domain (and why) in in order to perform a Spectral analysis of the signal.
- Obtain/compute the mathematical tools that you can apply.
- Say which frequency is contained in x(t)=1.

- The signal x(t)=1 has (clearly) infinite energy. For this reason the Standard Fourier Transform cannot be applied (i.e., does not exist).
- Since x(t)=1 does not converge to zero in both sides, i.e., to
 -Inf and +Inf, and the Laplace transform can help "only in one
 side", the Laplace transform does not exist neither. In fact, it
 we try to compute the Laplace transform, we have:

$$X(s) \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} e^{-st}dt =$$

$$= \left[-\frac{e^{-st}}{s} \right]_{-\infty}^{\infty} = \left[-\frac{e^{-(\sigma+j\omega)t}}{(\sigma+j\omega)} \right]_{-\infty}^{\infty} = +\infty \text{ or } -\infty \text{ (depending on the sign of } \sigma \text{)}$$

X(s) does not exist

- In the next slides, we will see if we can express this signal as a Fourier Series...
- First of all, we will consider a generic period T_0 (and, as a consequence, a generic fundamental frequency w_0)
- Later we will check if we need to define specific values of T_0 or w_0.

For a periodic signal, we can compute the Fourier Series:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

 for any values of the fund. frequency w_0, we can directly see that:

$$x(t) = \dots + a_{-1}e^{-j\omega_0 t} + a_0 + a_1e^{j\omega_0 t} + a_2e^{2j\omega_0 t} + \dots$$

and setting:

$$a_0 = 1$$
, and $a_k = 0 \quad \forall k \neq 1$

• we get exactly: x(t)=1 (for any possible w_0 !!!)

- Note that the previous result is valid for any possible values of the fundamental frequency w_0 (and/or the period T_0).
- The signal x(t)=1 can be considered a periodic signal, but we do not need to specify the period T_0 or the fundamental frequency w_0.

• The corresponding GENERALIZED Fourier Transform (GFT) is with a_0=1, the rest of coefficients zero, we have:

$$X_{G}(\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_{k} \delta(\omega - k\omega_{0})$$
$$X_{G}(\omega) = 2\pi \delta(\omega)$$

• LOOKING THE FS and the GFT (which just contains the information in the FS), we can see that, among all the frequency that a periodic signal can contain:

$$\omega^{(k)} = k\omega_0$$

• the only contained frequency is $\omega^{(0)}=0$ (see the delta above or think in the unique non-null coefficient a_0=1)

Hence, the only frequency contained is the null frequency:

$$\omega^{(0)} = 0$$

 This should be clear and obvious (from the beginning of the example) since x(t)=1 is a constant signal, and a constant signal "means" no variations, zero variations, NO OSCILLATIONS that is exactly the meaning of the null frequency!

ADDITIONAL OBSERVATIONS TO Example 1

- Let consider that we have a signal x(t) with "zero mean". In this case, this signal does not contain the null frequency.
- If we add a constant A to the signal x(t) above with "zero mean", we get

$$z(t) = A + x(t)$$

 This signal z(t) has mean "A" and contains the null frequency with energy "A^2" ("A" al cuadrado).

Example 1.5

Let consider the signals

$$x_1(t) = \cos(\omega_0 t), \quad x_2(t) = A + \cos(\omega_0 t)$$

- write the two Generalized Fourier Transforms,
- and say the frequencies contained in each one.

Example 1.5

The two Generalized Fourier Transforms are

$$X_{G,1}(\omega) = \pi \delta(\omega + \omega_0) + \pi \delta(\omega - \omega_0)$$

$$X_{G,2}(\omega) = 2\pi A\delta(\omega) + \pi\delta(\omega + \omega_0) + \pi\delta(\omega - \omega_0)$$

and the frequencies in x_1(t) are just two frequencies,

$$-\omega_0$$
, and ω_0

and the frequencies in x_2(t) are just three frequencies,

$$0, -\omega_0, \text{ and } \omega_0$$

Consider the signal x[n]=1:

- Say which mathematical tools can you apply in a transformed domain (and why) in in order to perform a Spectral analysis of the signal.
- Obtain/compute the mathematical tools that you can apply.
- Say which frequency is contained in x[n]=1.

- For the same reasons of x(t)=1, the signal x[n]=1 does not admit Stand. Fourier Transform and Zeta Transform.
- We can just compute Fourier Series and GFT, as for x(t)=1.

The signal x[n]=1 is a periodic signal with period

$$N=1$$

As for x(t)=1, we have

$$a_0 = 1$$

• but for the peridicity of the a_k's (in discrete time), we have

$$a_k = a_{k+N} = a_{k+1}$$

so that all the a_k's are equal to 1,

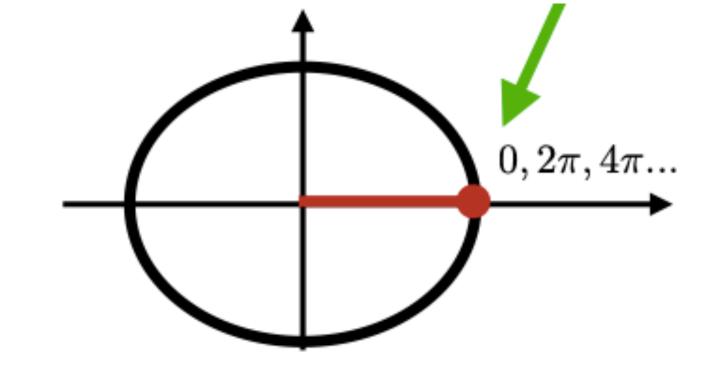
$$... = a_{-1} = a_0 = a_1 = a_2 = ... = 1$$

Moreover, since N=1, the fundamental frequency is

$$\Omega_0 = \frac{2\pi}{N} = 2\pi$$

• and since, all the a_k's are equal to 1, the signal x[n]=1 contains all these frequencies (but are different frequencies?)

$$\Omega^{(k)} = k\Omega_0 = 2\pi k$$


 but are different frequencies? no! IT IS JUST THE NULL FREQUENCY! (in discrete time, the Omega's are "angles"...)

• ...but are different frequencies? no! IT IS JUST THE NULL FREQUENCY! (in discrete time, the Omega's are "angles"...)

$$\Omega^{(k)} = k\Omega_0 = 2\pi k$$

• It represents the angle:

$$0, 2\pi, 4\pi, -2\pi, \text{etc.}.$$

that is always the same angle (and then the same frequency):
 ZERO

 Again, this should be clear and obvious (from the beginning of the example) since x[n]=1 is a constant signal in discrete time, and a constant signal "means" no variations, zero variations, NO OSCILLATIONS that is exactly the meaning of the null frequency!

THE GENERALIZED FOURIER TRANSFORM IN THIS CASE IS:

• RECALL THAT
$$... = a_{-1} = a_0 = a_1 = a_2 = ... = 1$$

and

$$X_G(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\Omega - k\Omega_0\right)$$

and

$$\Omega_0 = \frac{2\pi}{N} = 2\pi$$

we obtain:

$$X_G(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - k2\pi)$$

we have obtained:

$$X_G(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta \left(\Omega - k2\pi\right)$$

 Note that it is periodic with period 2\pi as any other FTs and GFTs for signals defined in the discrete time domain:

$$X_G(\Omega) = X_G(\Omega + 2\pi)$$

Questions?