# Solved Problems - DFT - part 2

Linear systems and circuit applications
Discrete Time Systems

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u> Laura Cornejo — <u>laura.cornejo@urjc.es</u>

#### Let consider the following signal:

$$x[0] = 3, x[1] = -5, x[2] = 1.5, x[n] = 0 for the rest of n$$

Let us consider that is obtained sampling a continuos signal x(t) with sampling period T=0.1 sec.

- (a) Say what is the maximum frequency of the signal x(t) that you can detect.
- (b) Interpret the output of an DFT for a generic N and with N=3,4,5, as X(Omega) FT of x[n] and as X(omega) FT of x(t).

(a) If the signal x(t) has been well-sampled, we can "see" until the frequency:

$$\frac{\omega_s}{2} = \frac{2\pi}{2T} = \frac{\pi}{T} = \frac{\pi}{0.1} = 31.4159 \quad \text{rad/sec}$$

(b) Each output of DFT from k=0,...,N-1 (fft in matlab) can be interpreted as associate to the frequencies

$$\Omega = 0, \Omega_0, 2\Omega_0, ..., (N-1)\Omega_0$$
  $\Omega_0 = \frac{2\pi}{N}$ 

for x[n] (discrete time), and

$$\omega = 0, \omega_0, 2\omega_0, ..., (N-1)\omega_0$$

for x(t) (continuos time), where

$$\omega_0 = \frac{\Omega_0}{T} = \frac{2\pi}{NT}$$

However, recall that in continuous time we can "see" only until

$$\omega_{\text{max}} = \frac{\omega_s}{2} = \frac{2\pi}{2T} = \frac{\pi}{T} = \frac{\pi}{0.1} = 31.4159 \quad \text{rad/sec}$$

therefore some outputs, in this case, have not "sense"....

$$\omega = 0, \omega_0, 2\omega_0, ..., (X - 1)\omega_0$$

exactly only an half or half+1.... (solo mitad! o mitad+1) since fft gives you exactly N values...

$$\omega_0 = rac{\Omega_0}{T} = rac{2\pi}{NT} = rac{2}{N}\omega_{ exttt{max}} \qquad \qquad \omega_{ exttt{max}} = rac{N}{2}\omega_0$$

(b) N=3

$$X(\Omega) = 3 - 5e^{-j\Omega} + 1.5e^{-j2\Omega}$$

$$X_N[k] = 3 - 5e^{-jk\frac{2\pi}{N}} + 1.5e^{-j2k\frac{2\pi}{N}}$$

In an exam, you have to write all the "complete" formulas with exponentials etc. here I will give you the numerical results in order to check your calculus... (see Example 2)

$$\Omega_0 = \frac{2\pi}{N} = \frac{2\pi}{3}$$

$$X(\Omega) = 3 - 5e^{-j\Omega} + 1.5e^{-j2\Omega}$$
$$X_N[k] = 3 - 5e^{-jk\frac{2\pi}{N}} + 1.5e^{-j2k\frac{2\pi}{N}}$$

(b) N=3

```
\Omega_0 = \frac{2\pi}{N} = \frac{2\pi}{3}
```

```
here the FFT:
ans =
  -0.5000 + 0.0000i
                      4.7500 + 5.6292i 4.7500 - 5.6292i
Omega_0:
0mega_0 =
    2.0944
Frequencies (discrete):
Omega =
```

4.1888

2.0944

0

(b) 
$$N=3$$

$$\Omega_0 = \frac{2\pi}{N} = \frac{2\pi}{3}$$

(b) N=3 
$$\Omega_0 = \frac{2\pi}{N} = \frac{2\pi}{3}$$
  $\omega_0 = \frac{2\pi}{NT} = 20.9440$   $\omega_{\text{max}} = \frac{\pi}{T} = 31.4159$ 

$$\omega_{\max} = \frac{\pi}{T} = 31.4159$$

#### sampling period:

0.1000

 $omega_0 =$ 

20.9440

maximum frequency that you can see:

31.4159

#### Frequencies (continuos):

omega = 
$$31.4159$$
0 20.9440 41.8879

Just frequencies that you can see:

20.9440

#### (b) N=4

```
here the FFT:
ans =
  -0.5000 + 0.0000i    1.5000 + 5.0000i    9.5000 + 0.0000i    1.5000 - 5.0000i
Omega_0:
0mega_0 =
    1.5708
Frequencies (discrete):
Omega =
                    3.1416
             1.5708
                               4.7124
```

```
(b) N=4
```

```
sampling period:
                                        Frequencies (continuous):
T =
   0.1000
                                        omega =
                                                      15.7080
                                                                  31.4159
omega_0 =
                                        Just frequencies that you can see:
  15.7080
maximum frequency that you can see:
                                        omega =
omega_max =
                                                  0
                                                       15.7080
  31.4159
```

```
here the FFT:
(b) N=5
           ans =
             Columns 1 through 4
             -0.5000 + 0.0000i   0.2414 + 3.8736i   7.5086 + 4.3655i   7.5086 - 4.3655i
             Column 5
              0.2414 - 3.8736i
           Omega_0:
           Omega_0 =
               1.2566
           Frequencies (discrete):
           Omega =
                                   2.5133
                         1.2566
                                             3.7699
                                                       5.0265
```

```
Frequencies (continuous):
(b) N=5
                                   omega =
sampling period:
                                                                      37.6991
                                             0
                                                 12.5664
                                                            25.1327
T =
                                   Just frequencies that you can see:
    0.1000
                                   omega =
omega_0 =
                                                            25.1327
                                             0
                                                 12.5664
   12.5664
maximum frequency that you can see:
omega_max =
   31.4159
```

Please, compare Example 8 and Example 7, which consider different signals/data, and see what is changed and what remains the same (basically only the fft changes...).

#### Let consider the following signal:

$$x[0] = 1, x[1] = -5, x[2] = 2, x[3] = 0.1$$
  $x[n] = 0$  for the rest of n

- (a) Show the output of fft(x) (without specify "N") and provide the correspondence with the values of X\_N[k] and X(Omega).
- (b) Considering a signal obtained repeating x[n] periodically with period N=4. Obtain the coefficients a\_k of the Fourier Series.

$$X(\Omega) = 1 - 5e^{-j\Omega} + 2e^{-j2\Omega} + 0.1e^{-j3\Omega}$$

$$\Omega = k\Omega_0 = k\frac{2\pi}{N}$$

$$X_N[k] = 1 - 5e^{-jk\frac{2\pi}{N}} + 2e^{-j2k\frac{2\pi}{N}} + 0.1e^{-j3k\frac{2\pi}{N}}$$

$$X(\Omega) = 1 - 5e^{-j\Omega} + 2e^{-j2\Omega} + 0.1e^{-j3\Omega}$$
$$X_N[k] = 1 - 5e^{-jk\frac{2\pi}{N}} + 2e^{-j2k\frac{2\pi}{N}} + 0.1e^{-j3k\frac{2\pi}{N}}$$

(a) The fft(x) returns the same result of fft(x,L), i.e., N=L. In this case, L=4. Then, fft(x) returns  $X_4[k]$  for k=0,1,2,3:

$$X_4[k] = 1 - 5e^{-jk\frac{2\pi}{4}} + 2e^{-j2k\frac{2\pi}{4}} + 0.1e^{-j3k\frac{2\pi}{4}}$$

$$X_4[k] = 1 - 5e^{-jk\frac{\pi}{2}} + 2e^{-jk\pi} + 0.1e^{-jk\frac{3\pi}{2}}$$

(a) The fft(x) returns the same result of fft(x,L), i.e., N=L. In this case, L=4. Then, fft(x) returns  $X_4[k]$  for k=0,1,2,3:

$$\begin{split} X_4[k] &= 1 - 5e^{-jk\frac{2\pi}{4}} + 2e^{-j2k\frac{2\pi}{4}} + 0.1e^{-j3k\frac{2\pi}{4}} \\ X_4[k] &= 1 - 5e^{-jk\frac{\pi}{2}} + 2e^{-jk\pi} + 0.1e^{-jk\frac{3\pi}{2}} \\ X_4[0] &= 1 - 5 + 2 + 0.1 = -1.9 \\ X_4[1] &= -1 + 5.1j \end{split}$$
 >> 1-5\*exp(-j\*1\*pi/2)+2\*exp(-j\*1\*pi)+0.1\*exp(-j\*1\*3/2\*pi) ans =

-1.0000 + 5.1000i

```
X_4[0] = 1 - 5 + 2 + 0.1 = -1.9
  X_4 |1| = -1 + 5.1j >> 1-5*exp(-j*1*pi/2)+2*exp(-j*1*pi)+0.1*exp(-j*1*3/2*pi)
                            ans =
                             -1.0000 + 5.1000i
    X_4[2] = 7.9 >> 1-5*exp(-j*2*pi/2)+2*exp(-j*2*pi)+0.1*exp(-j*2*3/2*pi)
                    ans =
                       7.9000 + 0.0000i
X_4|3|=-1-5.1j >> 1-5*exp(-j*3*pi/2)+2*exp(-j*3*pi)+0.1*exp(-j*3*3/2*pi)
                          -1.0000 - 5.1000i
```

```
CHECK IT:
               here the FFT:
               ans =
             -1.9000 + 0.0000i −1.0000 + 5.1000i 7.9000 + 0.0000i −1.0000 - 5.1000i
               Omega_0:
               0mega_0 =
                   1.5708
               Frequencies (discrete):
               Omega =
                                      3.1416
                             1.5708
                                                4.7124
```

(b) Since the period of the signal is exactly N=4, we do need more computations since, by the theory, we have:

$$a_k = \frac{1}{4} X_4 [k]$$

and can use the X\_4[0], X\_4[1], X\_4[2], X\_4[3] computed before.

**Generally:** 

$$a_k = \frac{1}{N} X_N[k]$$

#### Let consider the following signal:

$$x[0] = 1, x[1] = -5, x[2] = 2, x[3] = 0.1$$
  $x[n] = 0$  for the rest of n

Considering N=4, check that  $X_4[0]=X_4[4]$ ,  $X_4[1]=X_4[5]$ , etc..., i.e., the periodicity of  $X_N[k]$ .

#### From the previous example:

$$X_{4}[k] = 1 - 5e^{-jk\frac{2\pi}{4}} + 2e^{-j2k\frac{2\pi}{4}} + 0.1e^{-j3k\frac{2\pi}{4}}$$

$$X_{4}[k] = 1 - 5e^{-jk\frac{\pi}{2}} + 2e^{-jk\pi} + 0.1e^{-jk\frac{3\pi}{2}}$$

$$X_{4}[0] = 1 - 5 + 2 + 0.1 = -1.9$$

$$X_{4}[1] = -1 + 5.1j$$

$$X_{4}[2] = 7.9$$

$$X_{4}[3] = -1 - 5.1j$$

$$X_4[4] = -1.9 \Rightarrow 1-5*\exp(-j*4*pi/2)+2*\exp(-j*4*pi)+0.1*\exp(-j*4*3/2*pi) \\ ans = -1.9000 - 0.0000i \\ X_4[5] = -1 + 5.1j \Rightarrow 1-5*\exp(-j*5*pi/2)+2*\exp(-j*5*pi)+0.1*\exp(-j*5*3/2*pi) \\ ans = -1.0000 + 5.1000i \\ X_4[6] = 7.9 \Rightarrow 1-5*\exp(-j*6*pi/2)+2*\exp(-j*6*pi)+0.1*\exp(-j*6*3/2*pi) \\ ans = -1.0000 + 5.1000i \Rightarrow 1-5*\exp(-j*6*pi/2)+2*\exp(-j*6*pi/2)+0.1*\exp(-j*6*3/2*pi/2) \\ ans = -1.0000 + 5.1000i \Rightarrow 1-5*\exp(-j*6*pi/2)+2*\exp(-j*6*pi/2)+0.1*\exp(-j*6*3/2*pi/2) \\ ans = -1.0000 + 5.1000i \Rightarrow 1-5*\exp(-j*6*pi/2)+0.1*\exp(-j*6*3/2*pi/2) \\ ans = -1.0000 + 5.1000i \Rightarrow 1-5*\exp(-j*6*pi/2)+0.1*\exp(-j*6*pi/2) \\ ans = -1.0000 + 5.1000i \Rightarrow 1-5*\exp(-j*6*pi/2) \\ ans = -1.000$$

7.9000 + 0.0000i

$$X_4[7] = -1 - 5.1j$$
 ans =

```
>> 1-5*exp(-j*7*pi/2)+2*exp(-j*7*pi)+0.1*exp(-j*7*3/2*pi)

ans =
-1.0000 - 5.1000i
```

$$X_4[8] = -1.9$$
 >> 1-5\*exp(-j\*8\*pi/2)+2\*exp(-j\*8\*pi)+0.1\*exp(-j\*8\*3/2\*pi) ans = -1.9000 - 0.0000i

etc... we proved that by numerical check.

Considering N=4, write the Vandermonde matrix and the vectorial form for the computation of the DFT.

#### Example: evaluating DFT with N=4 at 0, 1,2,3

$$X_4[0] = \sum_{n=0}^{3} x[n] = x[0] + x[1] + x[2] + x[3]$$

$$X_{4}[\mathbf{1}] = \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}\mathbf{1}n} = \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{\pi}{2}n} = \sum_{n=0}^{3} x[n] \cdot (e^{-j\frac{\pi}{2}})^{n} \sum_{n=0}^{3} x[n] \cdot (-j)^{n}$$

$$= x[0](-j)^{0} + x[1](-j)^{1} + x[2](-j)^{2} + x[3](-j)^{3} = x[0] - x[1]j - x[2] + x[3]j$$

$$X_4[2] = \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}2n} = \sum_{n=0}^{3} x[n] \cdot (e^{-j\pi})^n = x[0] + x[1](-1) + x[2](-1)^2 + x[3](-1)^3$$

$$X_4[3] = \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}3n} = \sum_{n=0}^{3} x[n] \cdot (e^{-j\frac{3\pi}{2}})^n = x[0] + x[1]j + x[2]j^2 + x[3]j^3$$

The same as with the Fourier Series (different only for a factor 1/N)

#### We arrive to:

$$X_4[0] = x[0] + x[1] + x[2] + x[3]$$
 $X_4[1] = x[0] - jx[1] - x[2] + x[3]$ 
 $X_4[2] = x[0] - x[1] + x[2] - x[3]$ 
 $X_4[3] = x[0] + jx[1] - x[2] - jx[3]$ 

We can write it as a linear system!

With the previous case (N=4):

$$\begin{bmatrix} X_{4}[0] \\ X_{4}[1] \\ X_{4}[2] \\ X_{4}[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

$$\mathbf{F} \qquad \mathbf{x}$$

F is a Vandermonde matrix! Each row is "geometric progression" (see next slide)

$$\mathbf{X}_4 = \mathbf{F}\mathbf{x}$$

#### **Generic N:**

$$\mathbf{F} := \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}2} & \dots & e^{-j\frac{2\pi}{N}(N-1)} \\ 1 & e^{-j\frac{2\pi}{N}2} & e^{-j\frac{2\pi}{N}4} & \dots & e^{-j\frac{2\pi}{N}2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & e^{-j\frac{2\pi}{N}(N-1)} & e^{-j\frac{2\pi}{N}2(N-1)} & \dots & e^{-j\frac{2\pi}{N}(N-1)(N-1)} \end{bmatrix}_{N\times N}$$

$$\mathbf{X}_N = \mathbf{F}\mathbf{x}$$

Considering N=2, write the Vandermonde matrix and the vectorial form for the computation of the DFT.

$$X_{2}[0] = \sum_{n=0}^{1} x[n] = x[0] + x[1]$$

$$X_{2}[1] = \sum_{n=0}^{1} x[n] \cdot e^{-j\frac{2\pi}{2}1n} = \sum_{n=0}^{1} x[n] \cdot e^{-j\pi n} = \sum_{n=0}^{1} x[n] \cdot \left(e^{-j\pi}\right)^{n} = \sum_{n=0}^{1} x[n] \cdot (-1)^{n}$$

$$= x[0](-1)^{0} + x[1](-1)^{1} = x[0] - x[1]$$

$$X_2[0] = x[0] + x[1]$$
  
 $X_2[1] = x[0] - x[1]$ 

$$\begin{bmatrix} X_2[0] \\ X_2[1] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \end{bmatrix}$$

Considering N=3, write the Vandermonde matrix and the vectorial form for the computation of the DFT.

$$X_{3}[0] = \sum_{n=0}^{2} x[n] = x[0] + x[1] + x[2]$$

$$X_{3}[1] = \sum_{n=0}^{2} x[n] \cdot e^{-j\frac{2\pi}{3}1n} = \sum_{n=0}^{2} x[n] \cdot e^{-j\frac{2\pi}{3}n} = \sum_{n=0}^{2} x[n] \cdot \left(e^{-j\frac{2\pi}{3}}\right)^{n}$$

$$= x[0](e^{-j\frac{2\pi}{3}})^{0} + x[1](-e^{-j\frac{2\pi}{3}})^{1} + x[2](e^{-j\frac{2\pi}{3}})^{2} = x[0] + e^{-j\frac{2\pi}{3}}x[1]j + e^{-j\frac{4\pi}{3}}x[2]$$

$$X_{3}[2] = \sum_{n=0}^{2} x[n] \cdot e^{-j\frac{2\pi}{3}2n} = \sum_{n=0}^{2} x[n] \cdot \left(e^{-j\frac{4\pi}{3}}\right)^{n} = x[0] + x[1](e^{-j\frac{4\pi}{3}}) + x[2](e^{-j\frac{8\pi}{3}})$$

$$\begin{bmatrix} X_3[0] \\ X_3[1] \\ X_3[2] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{-j\frac{2}{3}\pi} & e^{-j\frac{4}{3}\pi} \\ 1 & e^{-j\frac{4}{3}\pi} & e^{-j\frac{8}{3}\pi} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \end{bmatrix}$$

Let consider some data (discrete signal) x[n] which is obtained sampling a continuos signal x(t) with sampling period T=0.1 sec.

- (a) Say what is the maximum frequency of the signal x(t) that you can detect.
- (b) Interpret the output of an DFT for a generic N and with N=3,4,5, 6 and 7, as X(Omega) FT of x[n] and as X(omega) FT of x(t).

(a) If the signal x(t) has been well-sampled, we can "see" until the frequency:

$$\frac{\omega_s}{2} = \frac{2\pi}{2T} = \frac{\pi}{T} = \frac{\pi}{0.1} = 31.4159$$
 rad/sec

maximum frequency that you can see:

31.4159

Note that this does not depend on N...

(b) Each output of DFT from k=0,...,N-1 (fft in matlab) can be interpreted as associate to the frequencies

$$\Omega = 0, \Omega_0, 2\Omega_0, ..., (N-1)\Omega_0$$
  $\Omega_0 = \frac{2\pi}{N}$ 

for x[n] (discrete time), and

$$\omega = 0, \omega_0, 2\omega_0, ..., (N-1)\omega_0$$

for x(t) (continuos time), where

 $\omega_0 = \frac{\Omega_0}{T} = \frac{2\pi}{NT}$ 

THIS DEPENDS on N...

However, recall that in continuous time we can "see" only until

$$\omega_{\text{max}} = \frac{\omega_s}{2} = \frac{2\pi}{2T} = \frac{\pi}{T} = \frac{\pi}{0.1} = 31.4159 \quad \text{rad/sec}$$

therefore some outputs, in this case, have not "sense"....

$$\omega = 0, \omega_0, 2\omega_0, ..., (X - 1)\omega_0$$

exactly only an half or half+1.... (solo mitad! o mitad+1) since fft gives you exactly N values...

$$\omega_0 = rac{\Omega_0}{T} = rac{2\pi}{NT} = rac{2}{N}\omega_{ exttt{max}} \qquad \qquad \omega_{ exttt{max}} = rac{N}{2}\omega_0$$

```
(b) N=3
```

$$0mega_0 =$$

2.0944 
$$\Omega_0 = \frac{2\pi}{N} = \frac{2\pi}{3}$$

Frequencies (discrete):

0 2.0944 4.1888

(b) 
$$N=3$$

omega\_0 = 
$$20.9440 \qquad \omega_0 = \frac{2\pi}{NT} = 20.9440$$
 maximum frequency that you can see: omega\_max = 
$$31.4159 \qquad \omega_{\max} = \frac{\pi}{T} = 31.4159$$
 Frequencies (continuous): omega = 
$$0 \qquad 20.9440 \qquad 41.8879$$
 Just frequencies that you can see: omega =

0 20.9440

(b) N=4

Omega\_0 = 
$$\Omega_0 = \frac{2\pi}{4} = \frac{\pi}{2} = 1.5708$$

Frequencies (discrete):

Omega =

0 1.5708 3.1416 4.7124

(b) N=4

(b) N=5

Omega\_0 = 
$$2\pi$$
 1.2566  $\Omega_0 = \frac{2\pi}{5} = 1.2566$ 

Frequencies (discrete):

Omega =

0 1.2566 2.5133 3.7699 5.0265

$$(b) N=5$$

omega\_0 = 
$$12.5664 \quad \omega_0 = \frac{2\pi}{NT} = 12.5664$$
 maximum frequency that you can see: 
$$0mega\_max = \\ 31.4159 \quad \omega_{max} = \frac{\pi}{T} = 31.4159$$
 Frequencies (|continuous): 
$$0mega = \\ 0 \quad 12.5664 \quad 25.1327 \quad 37.6991 \quad 50.2655$$
 Just frequencies that you can see: 
$$0mega = \\ 0mega = \\$$

12.5664 25.1327

(b) N=6

```
Omega_0 = 1.0472 \qquad \Omega_0 = \frac{2\pi}{N} Frequencies (discrete): 0 \qquad 1.0472 \qquad 2.0944 \qquad 3.1416 \qquad 4.1888 \qquad 5.2360
```

(b) 
$$N=6$$

omega\_0 = 
$$\omega_0 = \frac{2\pi}{NT}$$
 10.4720

maximum frequency that you can see:

omega\_max = 
$$\omega_{\text{max}} = \frac{\pi}{T} = 31.4159$$

Frequencies (continuous):

0 10.4720 20.9440 31.4159 41.8879 52.3599

Just frequencies that you can see:

0 10.4720 20.9440 31.4159

$$(b) N=7$$

Omega\_0 = 
$$0.8976 \qquad \Omega_0 = \frac{2\pi}{N}$$
 Frequencies (discrete):

Omega =

0 0.8976

1.7952

2.6928

3.5904

4.4880

5.3856

(b) 
$$N=7$$

omega\_0 = 
$$\omega_0 = \frac{2\pi}{NT}$$
 maximum frequency that you can see:

31.4159 
$$\omega_{ ext{max}} = \frac{\pi}{T} = 31.4159$$

Frequencies (continuous):

0 8.9760 17.9520 26.9279 35.9039 44.8799 53.8559

Just frequencies that you can see:

0 8.9760 17.9520 26.9279

#### Questions?