# Introduction to the channel coding

Part 0: Intro

### From Source Coding to Channel coding

 In data compression (source coding), we try to remove "redundancy"

 In channel coding, we try to add "redundancy" in a clever way.

#### From Source Coding to Channel Coding

- The reasons (to add redundancy) are
- 1 reliability ("fiabilidad") in the communication (detect and correct errors; prob. Error Pe)
- 2 velocity/speed in the transmission (R)

There is a trade-off reliability-velocity

# Reliability

 The main goal when we transmit something is "reliability" ("fiabilidad")

 The reliability is measured by the Probability of error, Pe, in detection.



## Reliability

 We can always obtain a smaller Pe if we add bits of "redundancy":

Num. of bits of Red. 
$$\rightarrow \infty$$
  
 $P_e \rightarrow 0$ 



# Reliability

 We will see that, in certain cases, we can also have (stronger result) if (R<C; a certain value C)</li>

Num of Bits of the codewords (INFO+RED)  $\rightarrow \infty$  $P_e \rightarrow 0$  Keeping constant R !!!



## Trade-off reliability-velocity

 Add more redundancy, reduce the speed/rate of transmission (of the "info")

 With smart/clever coding algorithms, we can obtain small Pe and high speed.

 However, each channel has a characteristic maximum speed/rate...

### **Channel Capacity (Shannon)**

 However, each channel has a characteristic maximum speed/rate, that is called Channel Capacity (C),

Capacity: "highest information rate (i.e., speed)
 that can be achieved (in a channel) with
 arbitrarily small error probability (Pe)"

- Consider a binary channel with C=0.7 (just an example).
- Bits of info: k
- Bits of red: m
- Bits of codeword: n=k+m
- Velocity/Speed/Rate: R= k/n

```
n \to \infty \Longrightarrow P_e \to 0 if R < C !! with constant R !!!
```

 Shannon says: "if R<C, we could find a code with rate R such that Pe vanishes to zero. For R>C, it is not possible."

# First part: Channels and Channel Capacity

AS random variables, in formula

$$Y(t) = X(t) + E(t)$$

Streams of bits

t= time

Y(t)= received observation at time t

X(t)= trasmitted information at time t

E(t)= noise perturbation

Likelihood (in our case, CHANNEL MATRIX)

$$p(y_t | x_t)$$

$$p(y \mid x)$$

•  $M \times L$  CHANNEL MATRIX

$$p(y \mid x) = \begin{bmatrix} p(y = 1 \mid x = 1) & \dots & p(y = L \mid x = 1) \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ p(y = 1 \mid x = M) & \dots & p(y = L \mid x = M) \end{bmatrix}$$
 Rows must sum 1.

Graphically,



All the branches have no zero probabilities. The probabilities of the branches which go out from a input node, must sum 1.

We usually know also p(x)



• With p(y|x), we have all the statistical information:

$$p(x,y) = p(y \mid x)p(x)$$

We can compute "everything"



$$p(y) = \sum_{i=1}^{M} p(x = i, y) = \sum_{i=1}^{M} p(y \mid x = i) p(x = i)$$

$$p(x,y) = p(y \mid x)p(x)$$

$$p(x \mid y) = \frac{p(x,y)}{p(y)} = \frac{p(y \mid x)p(x)}{p(y)} = \frac{p(y \mid x)p(x)}{\sum_{i=1}^{M} p(y \mid x=i)p(x=i)}$$

We have the 5 elements

$$p(y,x)$$
  $p(y|x)$   $p(x|y)$   $p(x)$   $p(y)$ 

This formula

$$p(y = j) = \sum_{i=1}^{M} p(x = i, y = j) = \sum_{i=1}^{M} p(y = j \mid x = i) p(x = i)$$

can be recall graphically

$$X = i \qquad p(y = j \mid x = i)$$

$$X = s \qquad p(y = j \mid x = s)$$

$$p(y = j \mid x = k)$$

$$X = k$$
The other branches (that do not appear) have null probabilities 
$$p(y = j \mid x = k)$$

$$p(y = j \mid x = k)$$
We have to consider all branches which go in the j-th output node.

#### IDEAL CHANNEL

- clearly, we would like X=Y (ideal case).
- In this case, we obtain maxima mutual information ( $I_{XY} = H_X = H_Y$ ).
- zero loss of information ( $H_{X|Y} = 0$ ):

Namely, if I know Y I have no uncertainty with respect to X!!!



# The worst case: X and Y are independent

- Information about Y, give me no information about X.
- In this case we have  $I_{XY} = 0$  (minimum).
- Maximum of the loss of information  $H_{X|Y} = H_X$
- knowing Y, the uncertainty over X does not decrease.

$$p(x,y) = p(x)p(y)$$

$$p(y \mid x) = \frac{p(x,y)}{p(x)} = \frac{p(y)p(x)}{p(x)} = p(y)$$

# The worst case: X and Y are independent

When does it happen?

$$p(y \mid x) = \frac{1}{L} = \frac{1}{\text{num. of branches going out from one input (and num. of outputs)}}$$



The worst possible channel

All the inputs have the same number of arrows with the same probabilities (B=3, the probabilities are 1/3, 1/3, 1/3).

$$p(x,y) = p(y \mid x)p(x) = \frac{1}{L}p(x),$$

$$p(y) = \sum_{i} p(x_{i}, y) = \frac{1}{L} \sum_{i} p(x_{i}) = \frac{1}{L} \Rightarrow p(y) = p(y \mid x)$$

$$p(x,y) = p(y)p(x)!!!$$

When Y=X we have

$$I_{XY} = H_X = H_Y$$
  $H_{X|Y} = 0$   $H_{Y|X} = 0$  Both!!

• One conditional entropy can be zero and the other one no, even when  $Y \neq X$ . For instance,



The corresponding plot is:



The symmetric case is



• Please note that  $Y \neq X$ , however the channel can be considered "ideal" since the info lost is zero!

• The corresponding plot is:



### Maximize $I_{XY}$

- We want to maximize the mutual information.
- The channel is given, we can only change p(x).
- We look for the p(x) in order to maximize  $I_{XY}$  .



The channel matrix is given.

- In general, we cannot obtain  $I_{XY} = H_X$ , even trying to maximizing the mutual information.
- The CHANNEL CAPACITY is a "feature" of the channel:

$$C = \max_{p(x)} I_{XY}$$

 In order to obtain the capacity, we can work with two expressions of the mutual information:

$$I_{XY} = H_X - H_{X|Y}$$

$$p(x)$$

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{i=1}^{M} p(y|x=i)p(x=i)}$$

$$I_{XY} = H_Y - H_{Y|X}$$
 EASIER this one! 
$$p(y) = \sum_{i=1}^{M} p(x=i,y) = \sum_{i=1}^{M} p(y \mid x=i) p(x=i)$$

In the "exercises", it is easy to use this one

$$I_{XY} = H_Y - H_{Y|X}$$

But theoretically, the next one is more interesting:



VERY IMPORTANT OBSERVATION

 $2^c$  = number of inputs that I can use SIMULTANEOUSLY without having errors in detection

• The value  $2^{capacity}$  can be interpreted as the number of entries (inputs/symbols) that can be used (simultaneously) without having error during the transmission.

Example:

For sure, I can use two entries without doing errors in detection. I can assert this sentence without knowing the values p(y|x)

Seguramente (cualquiera sea la matriz de canal) puedo utilizar 2 entradas sin equivocarme.



Therefore I can write:

$$2^c \ge 2 \Rightarrow C \ge 1$$

C=1 is the worst case.

C=1 es en el caso peor.



I can use M/2 entries simultaneously, without errors in detection.

For sure, I can write:

$$2^c \ge \frac{M}{2} \Rightarrow C \ge \log_2 \frac{M}{2} = \log_2 M - 1$$

We found a lower bound for the capacity of this channel:

$$C \ge \log_2 \frac{M}{2}$$



We can also obtain an upper bound. Indeed, in the ideal case,
 AT MOST we can use all the entries:

$$2^{C} \le M$$
$$C \le \log_2 M$$

$$\log_2 \frac{M}{2} \le C \le \log_2 M$$

THIS FORMULA IS ALWAYS TRUE! NO JUST FOR THIS CHANNEL.

$$C \le \log_2 L$$

also this inequality is valid

In this case, L=M

### Upper Bound for Channel Capacity

Always we have

$$C \le \min(\log_2 M, \log_2 L)$$

You can see by formulas, or thinking on the number of entries that you can use simultaneously without having error in detection

$$I_{XY} = H_Y - H_{Y|X}$$

$$I_{XY} = H_X - H_{X|Y}$$

$$I_{Y|X} = 0$$

$$I_{Y|X} \neq 0$$

$$I_{X|Y} \neq 0$$

In the special case of



• We can prove  $C = \log_2 \frac{M}{2}$ 

## Capacity of parallel channels

Two channels in parallel:



$$2^{c_{tot}} = 2^{c_1} + 2^{c_2}$$

$$c_{tot} = \log_2(2^{c_1} + 2^{c_2})$$