Source Coding

(a subset of Data Compression)



Definition A source code C for a random variable X is a mapping from
X, the range of X, to D*, the set of finite-length strings of symbols from
a D-ary alphabet. Let C(x) denote the codeword corresponding to x and
t|/(x)| denote the length of C(x).

For example, C(red) = 00, C(blue) = 11 is a source code for A = {red,
blue} with alphabet D = {0, 1}.

X — D
——

C(x)

In almost all cases, we consider D=2 (i.e., 2 bits)




Definition The expected length L(C) of a source code C(x) for a ran-
dom variable X with probability mass function p(x) is given by

L(C) =) p()l(x),

xeX

where [(x) is the length of the codeword associated with x.




Example 1 Let X be a random variable with the following distri-
bution and codeword assignment:

Pr(X =1) =5, codeword C(1) =0
Pr(X =2) =4, codeword C(2) =10
Pr(X =3) =g, codeword C(3) =110
Pr(X =4) = 3'3- codeword C(4) = 111.

The entropy H(X) of X is 1.75 bits, and the expected length L(C) =
EI(X) of this code is also 1.75 bits. Here we have a code that has the
same average length as the entropy. We note that any sequence of bits
can be uniquely decoded into a sequence of symbols of X. For example,
the bit string 0110111100110 is decoded as 134213.




Example 2 Consider another simple example of a code for a random

variable:
Pr(X=1) = codeword C(1) =0
Pr(X =2) = codeword C(2) =10
Pr(X =3) = T codeword C(3) = 11.

’

’

Just as in Example 5.1.1, the code is uniquely decodable. However, in
this case the entropy is log3 = 1.58 bits and the average length of the

encoding is 1.66 bits. Here EI(X) > H(X).




Example 3 (Morse code) The Morse code is a reasonably efficient
code for the English alphabet using an alphabet of four symbols: a dot,
a dash, a letter space, and a word space. Short sequences represent fre-
quent letters (e.g., a single dot represents E) and long sequences represent
infrequent letters (e.g., Q is represented by “dash,dash,dot,dash™).



Bijective mapping (invertible mapping):

Definition A code is said to be nonsingular if every element of the
range of X maps into a different string in D*; that is,

x #x' = C(x) #CQX).

...es suficiente....

Nonsingularity suffices for an unambiguous description of a single
value of X. But we usually wish to send a sequence of values of X.

In such cases we can ensure decodability by adding a special symbol
(a “comma”) between any two codewords. But this is an inefficient use
of the special symbol; we can do better by developing the idea of self-
punctuating or instantaneous codes.

We want also to send a “stream” of bits.... d




In order to handle the “stream” of bits, we define:

Definition The extension C* of a code C is the mapping from finite-
length strings of A" to finite-length strings of D, defined by

Cxixz---x,) = C(x1)C(x2) - - - C(xp),

where C(x1)C(x2) - - - C(x,) indicates concatenation of the corresponding
codewords.

Example If C(x1) =00 and C(x2) =11, then C(x1x2) = 0011.

Definition A code is called uniquely decodable if its extension is non-
singular.

In other words, any encoded string in a uniquely decodable code has
only one possible source string producing it.

IMPORTANT OBSERVATION 2> However, one may have
to look at the entire string to determine even the first symbol in the
corresponding source string.




The name should be “prefix-free” code

... in some codes, this is not needed: /

Definition A code is called a|prefix code or an instantaneous code | if
no codeword is a prefix of any other codeword.

An instantaneous code can be decoded without reference to future code-
words since the end of a codeword is immediately recognizable. Hence,
for an instantaneous code, the symbol x; can be decoded as soon as we
come to the end of the codeword corresponding to it. We need not wait
to see the codewords that come later. An instantaneous code is a self-
punctuating code; we can look down the sequence of code symbols and
add the commas to separate the codewords without looking at later sym-
bols. For example, the binary string 01011111010 produced by the code
of Example 1 1is parsed as 0,10,111,110,10.

When we have “11” we know \ C(1)=0
C(2)=10

that we have to wait one bit
more to decide (but we do not C(3) =110
wait for other codeword, or
the entire sequence)....

C4) =111.



x#x' = Ckx) #CK).

Bijective mapping

Nonsingular
codes

Uniquely
decodable
codes

Instantaneous
codes

Cxpxz---x,) = C(x1)C(x2) - - - C(xy)
Bijective mapping of
the extended code,
creating a sequence,
a concatenation of
bits.

We can decode instantaneously,
we know when a transmission
of a codeword “starts” and
“finishes” (we do not need to
see all the sequence, we can
decode “online”)



TABLE 1 Classes of Codes

Nonsingular, But Not Uniquely Decodable

1l

X | Singular Uniquely Decodable But Not Instantaneous| | Instantaneous
1 0 0 10 0
2 0 010 00 10
3 0 01 11 110
B 0 10 110 111

Help to understand the example =D>=2>=2>=2>=> For the nonsingular
code, the code string 010 has three possible source sequences: 2 or 14 or
31, and hence the code is not uniquely decodable. The uniquely decodable
code is not prefix-free and hence is not instantaneous. To see that it is
uniquely decodable, take any code string and start from the beginning.
If the first two bits are 00 or 10, they can be decoded immediately. If

the first two bits are 11, we must look at the following bits. If the next
bit is a 1, the first source symbol is a 3. If the length of the string of
0’s immediately following the 11 is odd, the first codeword must be 110
and the first source symbol must be 4: if the length of the string of 0’s is

even, the first source symbol is a 3.
We have to see the complete sequence...




OTHER EXAMPLES WITH CORRESPONDING TREES:

TABLE Four different codes for a four-letter alphabet.

Letters Probability Code 1 Code 2 Code 3 Code 4

a, 0.5 0 0 0 0

a, 0.25 0 1 10 01

a, 0.125 1 00 110 011

ag 0.125 10 11 111 0111
Average length 1.125 1.25 1.75 1.875

A code in which no codeword is a prefix to another codeword is called a prefix code. A simple
way to check if a code is a prefix code is to draw the rooted binary tree corresponding to
the code. Draw a tree that starts from a single node (the roof node) and has a maximum of

two possible branches at each node. One of these branches corresponds to a 1 and the other
branch corresponds to a 0.

FREEDOM: We can choose the
bit to give to each branch!




Four different codes for a four-letter alphabet.

Letters Probability Code 1 Code 2 Code 3 Code 4

a, 0.5 0 0 0 0

a, 0.25 0 | 10 01

a, 0.125 1 00 110 011

ay 0.125 10 11 111 0111 ..dan |ugar"_
Average length 1.125 1.25 1.75 1.875

|Note that apart from the root node, the trees have two kinds of nodes—nodes that give

rise to other nodes and nodes that do not. The first kind of nodes are called internal nodes,
and the second kind are called external nodes or leaves.

(only associated with the external nodes. A code that is not a prefix code, such as Code 4, will

have codewords associated with internal nodes.

FREEDOM: We can choose the
bit to give to each branch!

Code 3

Prefix code!!!



REMARK: hence, to have a prefix code, we
only need to create a tree and consider the
leaves of the tree as codewords.




Theorem

satisfy the inequality

Z D7 <1.

i

(Kraft inequality) | For any instantaneous code (prefix

code) over an alphabet of size D, the codeword lengths Iy, [, . .., l,, must

Conversely, given a set of codeword lengths that satisfy this inequality,
there exists an instantaneous code with these word lengths.

In almost all cases, we consider D=2 (i.e., 2 bits)




BOUNDS AND OPTIMAL CODING

IMPORTANT:

BOUNDS ON THE OPTIMAL CODE LENGTH

H(X)<L<HX)+1.

An optimal (shortest expected length) prefix code for a given distribution
can be constructed by a simple algorithm discovered by Huffman

2>=>->->-> any other code for the same alphabet cannot have a
lower expected length than the code constructed by the algorithm.

Theorem Huffman coding is optimal; that is, if C* is a Huffman
code and C' is any other uniquely decodable code, L(C*) < L(C’).



HUFFMAN CODING (OPTIMAL)



The Huffman encoding algorithm starts by constructing a list of all the alphabet symbols
in descending order of their probabilities. It then constructs, from the bottom up, a
binary tree with a symbol at everv leaf. This is done in steps, where at each step two
symbols with the smallest probabilities are selected, added to the top of the partial tree,

deleted from the list, and replaced with an auxiliary symbol representing the two original
symbols. When the list is reduced to just one auxiliary symbol (representing the entire
alphabet), the tree is complete. The tree is then traversed to determine the codewords
of the symbols.

Example Consider a random variable X taking values in the set
X =1{1,2,3,4,5} with probabilities 0.25, 0.25, 0.2, 0.15, 0.15, respec-
tively. We expect the optimal binary code for X to have the longest
codewords assigned to the symbols 4 and 5.



We start to construct a tree, FROM THE BOTTOM!

Codeword
Length Codeword X Probability
2 01 1 0.25 : 4 0.55—1
2 10 2 0.25 25 3 0.45
2 11 3 0.2 25 25
3 000 4 0.15 2
3 001 5 0.15 |
This code has average length 2.3 bits. X
Note that |

have different
alternatives!



Codeword

Length Codeword X Probability

2 01 I 0.250/0.3_0/0.45 %0.55— 1
2 10 2 0.25 25 .3%0.4

2 11 3 0.2 25/ N0.25

3 000 4 0.15//,>0.2

3 001 5 0.15

This code has average length 2.3 bits. We build this tree from the
A bottom!!

0.15




EQUIVALENT ASSIGNATION OF THE BITS

Just another example; There are
several possibilities!!
(freedom in this choice)

1 =00
2 —11
33— 10
4 = 010
5 — 011




Here we consider D=3, i.e., 0, 1 and 2. (just an example)

Example Consider a ternary code for the same random variable.
Now we combine the three least likely symbols into one supersymbol and
obtain the following table:

Codeword X Probability

1 1 0.2 0.5 1
2 2 0.2 0.25; ;
00 3 0.2 0.25

01 4 0.1

02 5 0.1

This code has an average length of 1.5 ternary digits.



Other examples of Huffman coding
(just with frequencies)

Table Frequency of characters
Character A| B | C| D/|E
Frequency 17 | 12 | 12 | 27 | 32




We build this tree from the
bottom!!

Iteration -2
Iteration -1
()24
@ 0 OO®l GW®ODOO
12 27 32 17 27 32
a. b.
Iteration -4

Iteration -3
0) 41
@
D ® © 0O ®
27 32
C.
Iteration -5

Huffman coding



The code itself 1s the bit value of each branch on the path,
taken 1n sequence.

A: 00 D: 10
B: 010 E: 11

Code

Final tree and code



Encoding

Let us see how to encode text using the code for our five
characters. Figure 15.6 shows the original and the encoded
text.

Text
EAEBAECDEA

|

A=— 00 D — 10
Encoder [B — 010 E — 11
C — 011

1100110100011011101100

Huffman code

Huffman encoding



Decoding

The recipient has a very easy job in decoding the data it
recerves. Figure 15.7 shows how decoding takes place.

Huffman code

1100110100011011101100

l

00 — A 010 — B
100 — D 011 = C | Decoder

11 — E

EAEBAECDEA

Text

Huffman decoding



Other examples of Huffman coding
(just with frequencies)

Consider the word “Hello”; the frequencies are:

Symbol H E L @)

Count 1 1 2 1




Bottom-up approach!!

Example: compressing the word “Hello” con Huffman

Iteration -2

Iteration -1

Iteration -3 E:(1) 0:(1)




VARIANCE of the code

04x14+02x24+02x3+4+01x4+01x4=22

ai

a2

as

a4

as

0.4

0.2

0.2

0.1

They have the same

4 expected length!
04x24+02x2+02x2+0.1x3+0.1x3=2.2 bits/symbol
0 [ $—1.0
1 \ 112345 “ 04 =7 a3 08
1
1
2345 _ . as 0.2 1 0 Oo—l o
@23 ¢ 04
- as 0.2 0
1345422 .
1 0 Qa4 0.1
aas5 O'W Q45 .&
0 as 0.1 0
(a) (b)

Figure 2.1: Huffman Codes.



VARIANCE of the code

—— 101

—— 1001
— 1000




VARIANCE of the code

a1 aq
@104 — 04 — 04 —=0.6/— 1

a
a20.2 — 0.2 —0.9—0.4
a3(0.2 — (C)BZ o O.2a2 ai
@4(.1 — 0.2

as().1
as + a4 + as

¥
a2 + a5 + a4 + a3

The depth of the tree is 4



VARIANCE of the code

ap — 11
as — 01
as — 00
as — 101

as — 100



VARIANCE of the code

a
a10.4 — (?14 — 0.14 % 1

a20.2 — 622 %

as
a30.2 — 0.2 — 0.2

as().1 — 0.2

as(). ]
0.1 0.1 a1 + a4 + as
4 as

The depth of the tree is 3! It is less depth !



VARIANCE of the code | Thisis better!!! Since it has

less variance

ai (4 0 [ *—1.0 a1 0.4

0.6
112345 1 G145 ¢——
1 1
12345 !_)Jl 1 0 —
a2z 0.2 o 06 as 0.2 ol 1©
@23 ¢ 04
1
az 0.2 — az 0.2 —5
345494 .
ag 0.1 1 " as 0.1
0.2
45 $55- 445 ==
as 0.1 — a5 0.1 —
(a) (b)

Figure 2.1: Huffman Codes.

0.4(1-2.2)>+0.2(2-2.2)2 +0.2(3 — 2.2)2 + 0.1(4 — 2.2)%+ 0.1(4 — 2.2)%> = 1.36,

0.4(2-22)2+0.2(2-2.2)2+02(2-22)2+0.1(3-2.2)2+0.1(3 - 2.2)2 = 0.16



Other example of Huffman coding

Symbol A B C D E
Count 15 7 6 6 5
Probabilities = 0.38461538 | 0.17948718 @ 0.15384615 @ 0.15384615 @ 0.12820513

15+7+6+6+5=39




Other example of Huffman coding

O[]

b 15@ 7@) @ 6? The two smallest
©

ones...

d 1 2
@ C)\ » Just two...




Other example of Huffman coding

9

Of(i)l Symbol Al B | C | D  E

(Y 0?;)1 Code 0 | 100 | 101 | 110 | 111
.

o@1 o

®©®®

1bit- 15+ 3bits- (7+ 6+ 6 + 5)
39 symbols

~ 2.23 bits per symbol.



Other example of Huffman coding

Simbolo 5i) Longiud (L)
A 0.5 0 1

B 0.25 10 2
C 0.125 110 3
D 0.125 111 3
D 0125 —_ |
o > 025 —
C 0125 —— > 05
0
B 0.25 —> (0.25 — | 0

A 05 =——> 05 =—— 05 2

" Los codigos se asignan desde el nodo final a los nodos inicial de cada simbolo, (derecha
a izquierda)



Char Freq Huff

E 125 | 110
T a3 000
A 80 000
0 76 01
I 73 | 1011
N 7 1010
S 65 | 1001
R 61 1000
H N | 1IN
L 41 | 0101
D 40 | 0100
C 31 | 11100
U 11101
Total

Huffman Coding Example

&38
(]
330
(2] o o
1588 174 2n
A o El T 2] £
80 78 81 126 144
D L R S N
40 41 81 6s 71

"




SHANNON CODING
(it is not optimal)



»The idea is to create codewords of length:

1

—logy pi | = |logy —
—logypi] = |logy -

» And then assign the bits in order to
construct an instantaneous code (a tree with
codewords as leaves).



Huffman codes and Shannon codes.| Using codeword lengths of

[log =1 (which is called Shannon coding) may be much worse than
the oﬁtimal code for some particular symbol. For example, con-
sider two symbols, one of which occurs with probability 0.9999 and
the other with probability 0.0001. Then using codeword lengths of
[log %] gives codeword lengths of 1 bit and 14 bits, respectively.
The optimal codeword length is obviously 1 bit for both symbols.
Hence, the codeword for the infrequent symbol is much longer in
the Shannon code than in the optimal code.

Is it true that the codeword lengths for an optimal code are always
less than [log #] ? The following example illustrates that this is not

always true. I



Comparison of SHANNON and Huffman coding

Example Consider a random variable X with a distribution

(%, s}, ', 1-]2-) The Huffman coding procedure results in codeword
lengths of (2, 2, 2,2) or (1, 2, 3, 3)

Both these codes achieve the same expected codeword length. In the
second code, the third symbol has length 3, which is greater than
[log %1. Thus, the codeword length for a Shannon code could be
less than the codeword length of the corresponding symbol of an
optimal (Huffman) code. This example also illustrates the fact that
the set of codeword lengths for an optimal code is not unique (there
may be more than one set of lengths with the same expected value).

Although either the Shannon code or the Huffman code can be
shorter for individual symbols, the Huffman code is shorter on aver-
age. Also, the Shannon code and the Huffman code differ by less

than 1 bit in expected codelength (since both lie between H and
H+1)




FANO CODING
(sub-optimal procedure)
(a.k.a., Shannon-Fano coding)



The SHANNON-FANO algorithm

Fano codes .| Fano proposed a suboptimal procedure for constructing
a source code, which is similar to the idea of slice codes. In his
method we first order the probabilities in decreasing order. Then we

choose k such that |zf=1 Pi— D ikl p,-| is minimized. This point
divides the source s'ymbols into two sets of almost equal probability.
Assign O for the first bit of the upper set and 1 for the lower set.

Repeat this process for each subset. By this recursive procedure, we
obtain a code for each source symbol. This scheme, although not
optimal in general, achieves L(C) < H(X) + 2.

v

When he probability are sorted in
descending order!!!



Example

Symbol A B C D E
Count 15 7 6 6 5
Probabilities = 0.38461538 | 0.17948718 @ 0.15384615 @ 0.15384615 @ 0.12820513

15+7+6+6+5=39




the sum is as close
as possible....

It can be seen as a

“TOP-BOTTOM”,
procedure

Example

This was the last “super-
symbol” to divide...



Example

Symbol A B C D E
Code 00 01 10 110 1M

2bits - (15 + 7 + 6) + 3 bits - (6 + 5)
39 symbols

~ 2.28 bits per symbol.



Example

a . 00 00
a, | 0.18 01 01
a, | 0.8 10 10
a, | 0.12 . 110 110
a, | 0.09 11 1110 | 1110
111
a, | 0.07 1111 | 1111
0.54

0.46




Other Example

Consider again the word “Hello”; the frequencies are:

Symbol H E L

Count 1 1 2




TOP-DOWN APPROACH (opposite of Huffman...)

Example: compressing the word “Hello”

5) (5) Iteration -2
0 | 0 1
/\ 3)
L:(2) H.E.0:(3) L:(2) 0 !
Iteration -1 H:(1) E,O:(2)
(a) (b)

Iteration -3




Shannon-Fano code on HELLO

Symbol Count Log, pll Code # of bits used
L 2 1.32 0 2
H 1 2.32 10 2
E 1 2.32 110 3
O 1 2.32 111 3
TOTAL # of bits: 10




ARITHMETIC CODING



Codificacion Aritmética
Si en lugar de asignar un cédigo a un simbolo codificaramos un cédigo a una secuencia
de m simbolos, la longitud media por simbolo se aproximaria mas a la entropia de la
fuente en el rango: 1

H<L,<H+—=
m

La codificacion aritmética se basa en la asignacion de una representacion binaria de la
probabilidad acumulada de un conjunto de simbolos, cuya representacion esta en el
intervalo [0,1).

No hay una correspondencia directa entre simbolo y cédigo.

Se envia una cadena de bits que representa un punto en el intervalo de probabilidades
obtenidas por la cadena de simbolos codificados.

Obtiene mejor rendimiento que el codificador Huffman cuando las probabilidades de los

simbolos no son potencias de 2, que es el caso mas habitual.



O

Codificacion Aritmética

Interpretacion conceptual:

Como la suma de probabilidades de un alfabeto de m simbolos ( s;,55,..,5,,-1,5,,) tiene que
sumar 1, se divide el intervalo [0,1] en m subintervalo cuya longitud coincide con la probabilidad
de cada simbolo (91,175, .., 01,0 )-

Con la llegada del primer simbolo se selecciona el subintervalo de dicho simbolo.

Este subintervalo se vuelve a dividir en 71 subintervalos con longitudes proporcionales a las
probabilidades p; de cada simbolo.

Con la llegada del siguiente simbolo se selecciona el nuevo subintervalo, y se vuelve a dividir en

m subintervalos con longitudes proporcionales a las probabilidades p; de cada simbolo.
Se repite hasta que se envian los / cédigos que se desean codificar de modo conjunto.
Se envia la representacion binaria de un puno intermedio del subintervalo final

Es preciso enviar un simbolo especial de fin de cadena de simbolos.



Consider a three-letter alphabet A = {a,, a,, a;} with P(a,) =0.7, P(a,) =0.1, and P(a,) =
0.2.

Consider to transmit the sequence = al, a2, a3

0.0 0.00 0.490 0.5460

>

Choose a
07 point here.
0.8 — @
a,
1.0 0.70 . . | 0.5600

0.7 x 0.7 = 0.49 (0.56 — 0.49) x 0.7 + 0.49 = 0.539
0.7 x 0.8 = 0.56 (0.56 — 0.49) x 0.8 + 0.49 = 0.546



| simbolo | __Pi____

S1 0.3
S5 0.1
S3 0.2
Sa 0.05
Ss 0.1
Se 0.25

o Se quiere transmitir una
secuencia con los 6 simbolos en
orden (81182153184! SSISG)

o El resultado es cualquier valor
en binario en el intervalo
[0.1058175, 0.1058250):

o [0.0001101100010110,
0.0001101100010111)

) 03 04 o6 068 0n7s 1.0

(a
[ 0.0.3) @ [03.04) | [04,.0.6) f [ 0.75,1.00
[ 0.6, o.mpj

0.09 012 018 0195 0225 x‘
& L | 1

-
lom. o-lz\ 0—]

0102 @ 0.108 01095 01125 \
———— 1 | o

0.09 [ 0102, 0. 108) 012
(d)
D.IOBJ 0.1056 0.1059 0.1065

| °
0. 102 0108
01056, 0.1

[ 0.65, 0.75)
(b

-

=9

(c

-

0. 10569 a.10s72 010578 0105795 0105825
l ] L — ®

EiC =

[ 0.105795, 0.105825)

0.1056
N
0105804 0105807 Q105813 01058145 0058175

| 1 1 1

0.105795 0.1058250

[ 01058175, 010582500




Codificacion Aritmeética

o (Como represento un numero real no entero en formato binario?
= El convenio es utilizar para la parte decimal potencias negativa de la base (2):
* Ejemplo de representacion de un numero con |0 bits, 5 bits para la parte entera y 5

bits para la fraccionaria:

2_

0 21 22 23

16 8 4 2 1 0.5 0.25 0.125 0.0625 0.03125

* Ejemplo de representacion binaria del nimero decimal 19.34375: 1001 1.0101 |

4 3 2 1 0 -1 -2 -3 -4 -5



OTHER EXAMPLE (for understanding how to DECODE)

60% de probabilidad del simbolo

NEUTRAL
= 20% de probabilidad del simbolo
POSITIVE
= 10% de probabilidad del simbolo
NEGATIVE

» 10% de probabilidad del simbolo END-
OF-DATA (Fin de los datos). (La
presencia de este simbolo significa que
la transmision sera ‘terminada
internamente’ como es bastante comun
en compresion de dalos; cuando este
simbolo aparece en el flujo de datos, el

decodificador sabra que el flujo entero ha
sido decodificado.)



OTHER EXAMPLE (for understanding how to DECODE)

el intervalo para NEUTRAL seria [0, 0.6)

el intervalo para POSITIVE seria [0.6, 0.8)

el intervalo para NEGATIVE seria [0.8, 0.9)

el intervalo para END-OF-DATA seria [0.9, 1).



OTHER EXAMPLE (for understanding how to DECODE)

We have transmitted /received 0.538 (real number of base 2 number....)

0 NEUTRAL 0.6 08 09 1
.- S
NEGATIVE™——__
0 0.36 048 054 0.6
’//:T
0.48 0516 0528 0.534 0.54
| | 4 Lo —
| | | |
END-OF-DATA
NEUTRAL———> NEGATIVE >END-OF-DATA

We need to know how many simbols we have, or the “end-of-data”



