Extending the concept of leftsided and right-sided sequences/signals

First we recall some example already seen...

First recalling:

Example 10

It could be considered: right-sided (and it is finite-length)

Example 10

$$x[n] = -3\delta[n] + 2\delta[n-1]$$

Using the result of example 7:
$$x[n] = \delta[n-n_0] \longrightarrow X(z) = z^{-n_0}$$

$$X(z) = -3 + 2z^{-1}$$

$$X(z) = \frac{-3z + 2}{z}$$

ROC: all the complex plane except z=0! (i.e., r=0)

First recalling:

Example 11

It could be considered: left-sided (and it is finite-length)

Example 11

$$x[n] = -3\delta[n+2] + 2\delta[n+1]$$

$$X(z) = -3z^2 + 2z$$

ROC: all the complex plane except |z|=r=Infinity!

Right-sided sequence-signal

Other examples of right-sided sequences, x[n]=(1/2)^n u[n]

$$x[n] = \left(\frac{1}{2}\right)^n u[n]$$
X(z) and ROC:

Poles in red dots!

ROC "outside"!

Determined by the pole with biggest module.

$$r > \frac{1}{2}$$

it is a right-sided (and it has an infinite-length)

Poles in red dots!

LEFT-sided sequence-signal

Another example of right-sided sequences, x[n]=-2^(n) u[-1-n]

ROC "inside"!

Determined by the pole with smallest module.

$$x[n] = -2^n u[-n-1]$$

X(z) and ROC:
$$|z| < 2$$

$$z(z) = \frac{z}{z-2}$$

it is a left-sided (and it has an infinite-length)

Both-sided or Two-sided, for sure (100%):

Example 3

$$x[n] = b^{|n|}, \quad b > 0$$

and the ZT exists only in one case, and with "donut" ROC:

Solution for b<1:

$$X(z) = \frac{1}{1 - bz^{-1}} + \frac{-1}{1 - b^{-1}z^{-1}} \quad , \quad b < |z| < \frac{1}{b}$$

...it can be also written with a unique fraction....

✓ The FT always exists!

The unit circle is always within

The ROC!!

- ✓ b and 1/b are the two poles!
- ✓ we have a "DONUT" ROC!

Now we can "mix"/combine some previous cases...

FIRST "MIX" EXAMPLE

We can see this signal as formed by two parts:

The samples at n=0 can belong to both "parts" - no problem

We can see this signal as formed by two parts:

This signal is "more" right-sided, since has infinite length in the right-side... So many people say: right-sided signal

This signal is "more" right-sided, since has infinite length in the right-side... So many people say: right-sided signal

SECOND "MIX" EXAMPLE

The samples at n=0 can belong to both "parts" - no problem

This signal is "more" left-sided, since has infinite length in the right-side... So many people say: left-sided signal

This signal is "more" left-sided, since has infinite length in the right-side... So many people say: left-sided signal

Poles in red dots!

There is a pole at z=0

It is like a "donut" ROC, but where the smaller radius is zero