TOPIC 5
ZETA TRANSFORM
PART 1



ZETA TRANSFORM

Region Of Convergence (ROC)

DEFINITION:

This is the so-called “Analysis Equation”:
in the sense that we go from time domain- x[n] -
to the transform domain - X(z).

zeC X(z) eC

It is a generalization/extension of the Fourier
Transform for a signal in discrete time (DTFT).



ZETA TRANSFORM

Region of Convergence
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X(z) = Z r[n]z~" 2 € ROC
R =

We will use the polar representation
for the variable z.

FREQUENCY



POLAR REPRESENTATION
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» For each r and Omega we have a complex
number z (a point in the complex plane).

vImag.




RELATIONSHIP with other topics/fields

» Zeta transform coincides with the so-called
Laurent Series - Laurent expansion (in complex
analysis).

» The inverse Zeta transform is related to the
so-called Cauchy integral formula and residue
theorem (in complex analysis).



RELATIONSHIP with other topics/fields

» Since the Laurent Series generalizes the
Taylor series, the Zeta trasform is a
generalization of the Taylor series;

Indeed, consider only the negative values of n,

we have
0

X(z) = Z rin]z™" T Zaﬁ[/@]zk

n=——00
k=-n



RELATIONSHIP with other topics/fields

» Zeta transform is related to the solution of
the difference equations.

> as a consequence, it is related also to digital
filtering theory (ARMA, AR, MA, IIR, FIR etc.).



Graphical example of | X(z)]

» The Zeta transform is defined in the complex domain
(except some points or regions where there is not
convergence; later we will talk about that); it takes
complex values then we plot the module (for instance).
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Inverse Zeta Transform

» Almost never used in practice.
» Synthesis equation.

|
-1
x[n] = .fX(Z)Zn dz
27 K
LINE INTEGRAL — CURVE INTEGRAL (in a “close”
“circular” curve)



Recovering the FOURIER TRANSFORM
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Recovering the FOURIER TRANSFORM
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Recovering the FOURIER TRANSFORM




Why ZETA TRANSFORM?

o —= 1 C__.

» The variable r can help the convergence of
the series (for some signals x[n]).

» RECALL For each r and Omega we have a
complex number z (a point in the complex
plane).



EXAMPLE
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Region of convergence (ROC)
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The ROC is depicted in “grey” Unit Circle

z-plane




Region of convergence (ROC)

ROC = {all z € C such that X (z) exists (finite)}

n=——oo

ROC = {all z € C such that S7°°  z[n]z—" converges}

I9m

The ROC is depicted in “grey” Unit Circle

z-plane

Does the FT exist? In this case “yes” !!!
Since the unit circle is contained in the ROC:
if a<1, then the FT exists;

if a>1, then the FT does not exist !




Region of convergence (ROC)

Ilwe have always . |
Ito obtain/provide: I ROC = {\Z‘ > \a\} |
X(z) jointly with the ROC. | ?

ROC: Region Of Convergence




Region of convergence (ROC)

'The ROC is an essential part of l
Ithe information. [



Other example
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Other example

ROC
n < ———
z[n] = —a"ul-n — 1] —>X(z) = 4 r\z\ <l|al
____________________________ T LR R
Unit Circle

The ROC is depicted in “grey”

z-plane

1 Re

If a<1 then the FT does not exist....
If a>1 then the FT will exist....
(In the figure above a<1, the FT does not exist)



About ROCs of the Zeta transform

r-o—-—-<-—-—=—===-=-= -
The ROCs are always “circular pieces/ :
portions” of the complex plane, possibly,

infinite pieces (as we saw in the |
previous slides; it can be also like a
“donut”, we will see this case).



SUMMARY of the examples
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...Then, the ZETA TRANSFORM IS:



Given a signal in time x[n]...

zn]—»X (z) + ROC

- : L
ITo a signal x[n] in time corresponds

[
jone X(z) and one ROC associated. The |
[



Given X]|[z]+ROC ...

X (z) + ROC——» z[n

-
Given a pair X[z]+ROC, in time we a [

IUNIQUE (only one) signal x[n], [



Given just X|[z] ...

ROC, $1Vﬂ
X[s] =10y o[

ROC; o 74

|G|ven only X[z], we different signals in time |
I (which provide the same X[z]). Each signal |
Icorresponds to a specific ROC. |



Given just X[z]: example

ROC-1

112| > al

xn| = a"un




Poles and zeros

POLES: all values of z such that X (z) — oo

ZEROS: all values of z such that X(z) =0



Poles and zeros: example

One zero at z=0

/

One pole at z=a



Poles and zeros: other example

Two zeros at z=-2
/ And z=2
— 4
ONE pole at
\ z=Infinity
(“almost” no

poles... )

X(z) = 2*



Poles and zeros: other example

Two zeros at z=-2j

/ and z=2j

ONE pole at
z=Infinity
(“almost” no

poles... )

X(z)=2"+4



Poles and zeros: other example

One zero at z=1
And one zero at

1 z=Infinity

22 4+ 4
\ Two poles at z=-2j

and z=2j

X(z) =



ROCs and poles

VERY IMPORTANT SLIDE !!

Generally, the poles are
in the boundaries of the ROCs. If
X(z) is rational (a fraction of
| polynomials) this is always the case.




ROCs and poles

,Namely, in the case of X(z) is ratlonal
| (a fraction of polynomials) the poles |
I “define/determine” the ROC. |




ROCs and poles: examples

zn] = a

The ROC is depicted in “grey” Unit Circle

z-plane

POLE at z=a



ROCs and poles: examples

zn| = —a"u|l-n— 1| —>X(z) = © M. <a

Idm

The ROC is depicted in “grey” Unit Circle

z-plane

POLE at z=a



