TOPIC 5 ZETA TRANSFORM PART 2

RECALL: ZETA TRANSFORM

We will use the polar representation for the variable z.

FREQUENCY

RECALL: Example 1

$$x[n] = a^n u[n] \longrightarrow X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

If
$$|az^{-1}| < 1$$
, i.e., $|z| > |a|$ ROC !!!!! Region of convergence

The ROC is depicted in "grey"

RECALL: Example 2

$$x[n] = -a^n u[-n-1] \longrightarrow X(z) = \frac{z}{z-a} \qquad \boxed{|z| < |a|}$$

Example 3

$$x[n] = b^{|n|}, \quad b > 0$$

Example 3

$$x[n] = b^{|n|}, \quad b > 0$$

 $x[n] = b^n u[n] + b^{-n} u[-n-1]$

FROM Example 1 and 2 (replacing "a" with "b"):

$$b^n u[n] \longleftrightarrow \frac{1}{1 - bz^{-1}}, \quad |z| > b$$

$$b^{-n}u[-n-1]\longleftrightarrow \frac{-1}{1-b^{-1}z^{-1}}, |z|<\frac{1}{b}$$

Example 3: ROC

ROC of this example: we have to satisfy SIMULTANEOUSLY the two ROCs below (of the previous examples)

roc-1:
$$|z|>b$$
 roc-2: $|z|<1/b$

The only way to obtain that is: b < 1

In this case, the ROC is:

Solution of Example 3 for b<1

Solution for b<1:

$$X(z) = \frac{1}{1 - bz^{-1}} + \frac{-1}{1 - b^{-1}z^{-1}} \quad , \quad b < |z| < \frac{1}{b}$$

...it can be also written with a unique fraction....

✓ The FT always exists!
 The unit circle is always within
 The ROC!!

√ we have a "DONUT" ROC!

Solution of Example 3 for b>1

Solution for b>1:

- ✓ No solution.
- √ The ROC is empty.

Recalling the signal...

$$x[n] = b^{|n|}, \quad b > 0$$

$$x[n] = b^{|n|}, \quad b > 0$$

The result "makes sense": for b>1, the signal is unbounded in both sides (infinite energy in both size), and the factor "r" in ZT cannot help simultaneously both sides to converge.

0 < b < 1

RECALL: about ROCs

The ROCs are always "circular pieces/ portions" of the complex plane, possibly infinite pieces.

A ROC does not contain poles (never!)

RECALL: about ROCs

About ROCs

The ROCs always are defined considering the module of z, i.e., |z|=r, which is the variable r!!

Example 4

$$X(z) = \sum_{n = -\infty}^{+\infty} x[n]z^{-n}$$

$$\downarrow x[n] = \delta[n] \longrightarrow X(z) = \sum_{n = -\infty}^{+\infty} \delta[n]z^{-n}$$

$$\downarrow X(z) = 1$$

ROC: all the complex plane !!!!

Example $5_{+\infty}$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$X(z) = \sum_{n=-\infty}^{+\infty} \delta[n-1]z^{-n}$$

$$x[n] = \delta[n-1] \longrightarrow X(z) = z^{-1}$$

ROC: all the complex plane but except zero!! There is a pole at 0.

Example 6 $X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$

ROC: all the complex plane (but except infinity!! There is a pole at Infinity).

** Generally, also "infinity" is included in this analysis....

Example 7
$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$X(z) = \sum_{n = -\infty}^{+\infty} \delta[n - n_0] z^{-n}$$

$$x[n] = \delta[n - n_0] \longrightarrow X(z) = z^{-n_0}$$

ROC: all the complex plane but except zero!! There is a (multiple) pole at 0 (with multiplicity n0, i.e., n0 coincident poles at 0).

Example 8: property

$$q[n] = x[n-n_0]$$

$$\downarrow^{\infty}$$

$$Q(z) = \sum_{n=-\infty}^{\infty} q[n]z^{-n}$$

$$\uparrow^{n=-\infty}$$

$$Q(z) = \sum_{n=-\infty}^{\infty} x[n-n_0]z^{-n}$$

$$\uparrow^{n=-\infty}$$
Change of variable: $k=n-n_0$

 $n = k + n_0$

Example 8: property

$$Q(z) = \sum_{k=-\infty}^{\infty} x[n]z^{-k-n_0}$$

$$Q(z) = z^{-n_0} \left[\sum_{k=-\infty}^{\infty} x[k]z^{-k} \right]$$

$$X(z)$$

$$Q(z) = z^{-n_0} X(z)$$

ROC: note that we adding a (multiple) pole at 0 (or at Infinity of n0<0) to the possible poles of X(z). If X(z) has a (multiple) zero at 0 this pole is removed.

Example 8: property

$$q[n] = x[n - n_0] \longrightarrow Q(z) = z^{-n_0}X(z)$$

Shift in time → multiplication by a power of z in the transformed domain

$$x[n-i] \longrightarrow z^{-i}X(z)$$

Example 9

$$x[n] = -3\delta[n] + 2\delta[n-1] + \delta[n-4]$$

Example 9

$$x[n] = -3\delta[n] + 2\delta[n-1] + \delta[n-4]$$

Using the result of example 7:
$$x[n] = \delta[n-n_0] \longrightarrow X(z) = z^{-n_0}$$

$$X(z) = -3 + 2z^{-1} + z^{-4}$$

$$X(z) = \frac{-3z^4 + 2z^3 + 1}{z^4}$$

ROC: all the complex plane except 0! We have a (multiple) pole at 0. At infinity, the pole at 0 help us....

ZT of finite length signals

For instance:

$$x[n] = \sum_{j=0}^{L-1} a_n \delta[n-j]$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=0}^{L-1} x[n]z^{-n}$$

$$= x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots + x[L-1]z^{-(L-1)}$$

$$= \frac{x[0]z^{L-1} + x[1]z^{L-2} + x[2]z^{L-3} + \dots + x[L-1]}{z^{L-1}}$$

ROCs of ZT of finite length signals

If x[n] has finite length, the ROC is all the complex plane except POSSIBLY the points z=0 and/or z=Infinity.

The ROC is all the complex plane just for x[n]=Delta[n].

Zeta Transform for LTI systems

The Zeta Transform of an impulse response of an LTI system is always rational: namely, a fraction of polynomials!

(see proof in the next slides)

For the proof we need to use the property:

$$x[n-i] \longrightarrow z^{-i}X(z)$$

Zeta Transform of the impulse response of a LTI system

The output of a LTI system can be expressed with the convolution sum and:

$$\sum_{i=0}^{L} b_i y[n-i] = \sum_{r=0}^{R} c_r x[n-r]$$

LINEAR DIFFERENCE EQUATION WITH COSTANT COEFFICIENTS (AND INITIAL CONDITIONS = 0)

Zeta Transform of the impulse response of a LTI system

$$\mathcal{Z}\left\{\sum_{i=0}^{L} b_i y[n-i]\right\} = \mathcal{Z}\left\{\sum_{r=0}^{R} c_r x[n-r]\right\}$$

$$\sum_{i=0}^{L} b_i \mathcal{Z} \{y[n-i]\} = \sum_{r=0}^{R} c_r \mathcal{Z} \{x[n-r]\}$$

$$\sum_{i=0}^{L} b_i z^{-i} Y(z) = \sum_{r=0}^{R} c_r z^{-r} X(z)$$

Zeta Transform of the impulse response of a LTI system

$$\sum_{i=0}^{L} b_i z^{-i} Y(z) = \sum_{r=0}^{R} c_r z^{-r} X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{R} c_r z^{-r}}{\sum_{i=0}^{L} b_i z^{-i}}$$

It can be expressed as a fraction of polynomials !!!

The Zeta Transform of an impulse response of an LTI system is always rational: namely, a fraction of polynomials!

In LTI systems: ROCs and poles

When X(z) is rational (a fraction of polynomials, i.e., for impulse response of LTI systems) the poles "define/determine" the ROC.