TOPIC 5
ZETA TRANSFORM
PART 2



RECALL: ZETA TRANSFORM

Region of Convergence
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We will use the polar representation
for the variable z.

FREQUENCY



RECALL: Example 1
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RECALL: Example 2
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Example 3
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Example 3
zn] =b", b>0
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Example 3: ROC

ROC of this example:
we have to satisfy SIMULTANEOUSLY
the two ROCs below (of the previous examples)

ROC-1:‘Z‘ > b ROCQ:‘Z‘ < ]_/b

The only way to obtain thatis: H < 1

In this case, the ROC is:



Solution of Example 3 for b<1

Solution for b<1:

1 —1 1
X(z) = | b<lz| < —
(2) 1—bz—!  1—p1lz—1 & b
...it can be also written with a
unique fraction.... Im

Unit circle

v'The FT always exists!
The unit circle is always within
The ROC !! ‘ R

v' b and 1/b are the two poles !
v we have a “DONUT” ROC !



Solution of Example 3 for b>1

Solution for b>1:

v'No solution.
v'The ROC is empty.



Recalling the signal...

x[n] =bl" >0

x[n]=b!"! x[n]=b!n!

<<<<<

L, { Moy

O0< bl b>1

The result “makes sense”: for b>1, the signal is unbounded in
both sides (infinite energy in both size), and the factor “r” in ZT
cannot help simultaneously both sides to converge.




RECALL: about ROCs

| The ROCs are always “circular pieces/ :

Iportlons of the complex plane, possibly,
| infinite pieces. |

__________________ |
|A ROC does not contain poles (never!) ,



RECALL: about ROCs

Im




About ROCs

The ROCs always are defined :
considering the module of z, i.e., |z]|=r, ,
which is the variable r !! [



Example 4

ROC: all the complex plane !!!!



Example 5_
X(z) = Z rin)z™"

+00
X(z) = Z oln—1]z7"

7

> X (2) =271
ROC: all the complex plane but
except zero !! There is a pole at 0.



—+ o0

Example 6 x(z)= S zfn]e

nN——=oo

X(z) = Z oln+1]z7"

> X(2) =2

ROC: all the complex plane (but except
infinity!! There is a pole at Infinity).

** Generally, also “infinity” is included in
this analysis....



Example 7 x,) - i’f ez

n=——aoo

l

+00
X(z) = Z oln —nglz™"

_—

r|n] = d\n — ng > X(z)=z""0

/ ROC: all the complex plane but except zero !!
ng > 0 There is a (multiple) pole at 0 (with multiplicity
no, i.e., n0 coincident poles at 0).




Example 8: property

qln| = xn — no

Qz) = »  qln)z""

n=——=oo

O

Qz) = Z rn —nglz™"

T n=—00

Change of variable: kK = n — ny

n==k-+ng



Example 8: property

Q)= Y aln)zh
Q(2) —z_”oi Z x[k]z ="

__________________

X (2)
Q(z) = 27" X (2)

ROC: note that we adding a (multiple) pole at 0 (or at Infinity of
n0<0) to the possible poles of X(z). If X(z) has a (multiple) zero at 0
this pole is removed.



Example 8: property

— e e —— — ——— ——— |
IShift in time =» multiplication by a :

:power of z in the transformed domain |

z[n — i —oua> 27" X (2)



Example 9

z[0] = —3,z[1] = 2,2[4] =1, T n]

otherwise 0

Easy to
express with
deltas

N

x[n] = —30[n] + 20[n — 1] 4+ d[n — 4]



Example 9

z|n] = —30[n] +20[n — 1] 4+ d[n — 4]

Using the result of example 7:

z[n] = dn —ng] ——X(2) =2

N
X(2)=-3+2z 14271

— 324+ 22341
X(z) = =

ROC: all the complex plane except 0! We have a (multiple) pole
at 0. At infinity, the pole at 0 help us....




ZT of finite length signals
For instance: gj[n] — ._ a,n(S[n — ]]

R

J
X(z) = Z xn]z™" = i x|n]

n=——oo

n

=z[0] +z[1]z 7V + 22z 2 + ...+ z[L — 1]z~

z[0]zh1 + 2[1]2F 72 + 222873 + ...+ 2[L — 1]
L1

ROC=?=>



ROCs of ZT
of finite length signals

] If x[n] has finite length, the ROC is all

: the complex plane except POSSIBLY the
| points z=0 and/or z=Infinity.

|The ROC is all the complex plane just for:
: x[n]=Delta[n].



Zeta Transform for LTI systems

The Zeta Transform of an impulse :
response of an LTl system is always |
rational: namely, a fraction of |
polynomials ! :

(see proof in the next slides) I

For the proof we need to use the property:

z[n — i —ov> 27" X (2)



Zeta Transform of the impulse
response of a LTl system

The output of a LTI system can be expressed with the
convolution sum and:

Z biyln — 1] = Z crxin —r)

LINEAR DIFFERENCE EQUATION WITH COSTANT
COEFFICIENTS (AND INITIAL CONDITIONS = 0)



Zeta Transform of the impulse
response of a LTl system

L R
Z{szy[n—z]} =Z {Zcfraj‘[n—r]}

Zbiz {yln —i]} = ZCTZ {xln —rl|}

R

Z biz 'Y (2) = Z crz ' X(2)

r=0



Zeta Transform of the impulse
response of a LTI system

Z biz 'Y (2 Z crz ' X(2)

| The Zeta Transform of an impulse response of |

an LTI system is always rational: namely, a

fraction of polynomials !



In LTI systems: ROCs and poles

I When X(z) is rational (a fraction of

: polynomials, i.e., for impulse
. response of LTI systems) the poles

I  “define/determine” the ROC.



