TOPIC between 5 and 6
Digital filters
PART 1 (and no more)



Linear difference equations
with constant coefficients

Z biyln —i] = Z crx\n — ]

n >0
n=20,12,3...

With L-INITIAL CONDITIONS (they are required)
yl—1],y[=2], ..., y[-L]

We need to know these L values !



Example

yn] —0.2yln — 1] — 0.2y[n — 2] = x[n] + x|n — 1]

L= R

Additionally consider the L- INITIAL CONDITIONS:
y[-1] =8,y[-2] = -5
and the following input signal:

2[~1] = 6,2[0] = —2,2[1] = -3,

the rest of values are zero for n # —1,0,1



Example

Obtain the first 3 values of the output signal y[n],
i.e., y[0], y[1] and y[2]:

yn| — 0.2yln — 1] — 0.2y[n — 2] = z[n] + x|n — 1]

y[—1] = 8,y[-2] = =5
2[—1] = 6,2[0] = —2,2[1] = —3,

the rest of values are zero for n # —1,0,1



Example

y[n] = 0.2yln — 1] 4+ 0.2y[n — 2] + z[n| + z[n — 1]

y[1] = 0.2y[1 — 1] + 0.2y[1 — 2] + z[1] + =[1 — 1]

y[1] = 0.2y[0] + 0.2y[—1] + z[1] + =[0)
y[1] = 0.2 4.6 +0.2-8—3—2
y|1] = —2.48



Example

y[2] = 0.2y[2 — 1] + 0.2y[2 — 2] + z[2] + x[2 — 1]
y[2] = 0.2y[1] 4+ 0.2y[0] + z[2] + =[1]

y[2] = 0.2 (—2.48) +0.2- 4.6 + 0 — 3

y[2] = —2.576



Example

Solution:

y[0] =4.6 y[l] = —-2.48 y[2] = —2.576



Linear difference equations
with constant coefficients

Different names:

v

v’ ARMA filters (special cases: AR filters - MA filters)
v'IIR filters (FIR filters)

v'Digital filters



SOLUTION: y[n]

We have solved the difference equation for 3
times steps by applying the recursion 3 times....

For linear difference equations with constant
coefficients general analytical solutions can be
obtained (as for the linear differential equations
with constant coefficient).



GENERAL SOLUTION: y[n]

Solution of the homogeneous
system:

With x[n]=0 and generic initial
conditions (free-response;
“transitory”, if stable...)

“Forced” solution:
Generic x[n] but
null initial
conditions.



Regarding y o[n]....

Solution of the homogeneous system: with x[n]=0 and generic initial
conditions (free-response; “transitory”, if stable...)

v' We have to study the “characteristic’’ polynomial:
related to the denominator of H(z) and the poles are
roots of the "characteristic’”’ polynomial...

v There are courses only for this goal: Dynamical
systems etc... (as with the differential equations)



Regarding y o[n]....

v" IF THE INITIAL CONDITIONS ARE NULL, THEN:

Yol| =0



Regarding y o[n]....

v" IF THE INITIAL CONDITIONS ARE NULL, THEN:

Yol| =0

And so:



Regarding y f[n]....

yrin| = xn|* hin

Yi(z) = X(2)H(2)



In all this course, we have
always considered
null initial conditions:

yin| = yrin] = zn| * hin

Y(2) = Yi(2) = X(2)H(=)



How can we find the

corresponding h[n]?
y|—1|=...=y|-L| =0
x[n| = o[n|

Recall that h[n] is the “impulse response”:
It can be done “by hand” following the recursion...

There is also a general procedure to obtain the
anylitical form of h[n]
(we do not considered it now...)



Classification

yl-1] =..=yl-L]=0
L R
Z biyln — 1] = Z crxin —r)
1=0 r=0

Auto-regressive part Moving-average part
(AR) (MA)

AR+MA = ARMA filter



General consideration

v’ A filter with an AR part is “more powerful” in
general (than an MA filter, without an AR part...)

v BUT it can be STABILITY ISSUES !
WE HAVE TO BE CAREFUL !



Moving average (MA) filter

Examples:

yn| = z[n] — z[n — 1] + 10x|[n — 10]
1 1 1
ylnl =gzl + gzln — 1]+ Sz{n -3

Arithmetic mean of the last 3 samples of x[n]



v MA filters are also called-known as
FINITE IMPULSE RESPONSE (FIR) filters.

WHY? Because the
corresponding h[n] has finite-
length !



v An MA filter is also called as “all-zeros” filter

v'WHY? The H(z) of h[n] correspoding to an MA filter
has “only” zeros, except one pole (generally multiple)
at |z|=r=0.



MA filter = “all-zeros” filter

R R
yln| = Zcrx[n — 7] —> Y(2) = ZCTZ_TX(Z)



v' FINITE IMPULSE RESPONSE (FIR) filter



MA filter:
advantanges and drawbacks

v Good point: Easy to implement

v Very good point: WE HAVE NOT STABILITY ISSUES !!!
If x[n] is stable (i.e., bound) no problem.

v Drawback: to reach the performance of an AR filter
(i.e., to have the same features in frequency) we need
a huge value of R (several coefficients).... We will see
that an AR filter can be expressed as an MA filter with
R=infinity.



Auto-regressive (AR) filter

> biyln — i) = z[n]
yln) = =3 hvln — i)+ -z}



Auto-regressive (AR) filter

Examples:

yln| = yln — 1]+z[n]
yln| = 0.5y[n — 1] — 0.2y|n — 2]4+x|n]

yln] = 0.8yln — 3] — by[n — 10]+x[n]



v" AR filters are also called-known as
INFINITE IMPULSE RESPONSE (lIR) filters.

WHY? Because the
corresponding h[n] has Infinite-
length !



v" An AR filter is also called as “all-poles” filter

v'WHY? The H(z) of h[n] corresponding to an AR filter
has “only” poles, except one zero (generally multiple)
at |z|=r=0.






_Y(2) 1 _ 1
H(z) = X)) b4 SE bt L pa
L
H(z) — Y(2) z

v'The H(z) has “only” poles, except one zero (generally
multiple) at |z|=r=0.



AR filter:
advantanges and drawbacks

v' Good point: we can obtain very good performance.

v"We will see that an AR filter can be expressed as an
MA filter with R=infinity.

v Drawback: WE HAVE STABILITY ISSUES !!!

v' Drawback: the implementation is not “easy” also
for the problem of the stability.



AR filter: STABILITY

v ALL POLES WITH MODULE LESS THAN 1, i.e., ALL
POLES WITHIN THE CIRCLE WITH RADIUS 1.

A

Poles with module less than 1.‘




AR+MA = ARMA filter
= linear difference equation
with constant coefficients
and null initial conditions
= LTl system



AR+MA = ARMA filter

yl-1] =..=yl-L]=0
L R
Z biyln — 1] = Z crxin —r)
1=0 r=0

Auto-regressive part Moving-average part
(AR) (MA)

AR+MA = ARMA filter



ARMA filter - Zeta Transform

ZbZZ {yln —1i|} = ZCrZ {zn —r]}



ARMA filter -Zeta transform

L R
Z biz 'Y (z) = Z crz ' X(2)
1=0 r=0
o




ARMA filter - Zeta Transform of the
impulse response of a LTl system




Clearly
ARMA filter = IIR filter,
Since it has an AR part.



ARMA filter

v MORE flexibility than AR and MA filters.

v ARMA is an IIR filter due to its AR part.



ARMA filter: STABILITY

v ALL POLES WITH MODULE LESS THAN 1, i.e., ALL
POLES WITHIN THE CIRCLE WITH RADIUS 1.

A

Poles with module less than 1.‘




Expressing an AR filter as a MA filter of
“order Infinity”

We are going to show it, starting with
the simplest AR filter: AR(1), of order 1



AR(1) yln|=oayn —1]+zn

yln — 1] = ay[n — 2] + x[n — 1]

ylnl = alayln = 2| + z[n — 1]) + zn]

y[n] = o*y[n — 2] + az[n — 1] + z[n] In that case
the AR(1)

yln] = a yny Is stable !

Si: ol <1y m— oo

:Zakx[n—k], MA(OO)




MA filtering
(an example)



Input signal x[n] (to be filtered)

T=0.1;

°o°o°0w5=2*pi/T -

W=2;

tc-o 0 0001 10, %%% simulating the continous domain

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

xc-51n(w*tc),
SXs=sin(Wxts)+j*xcos (Wxts);
ts=0:T7:10;!

f=sin(Wxts);
noise=sigxrandn(1,length(ts));
. xs=f+noise; |

1
R R R )

'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'0'0'0'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O

x|n| = sin(WnT') + Gaussian noise

ts




MA filter of order 9 — MA(9)

ARITHMETIC MEAN OF 10 CONSECUTIVE VALUES:
Which kind of filter can be?
...it is doing a smoothing... making the average...



MA filter of order 9 — MA(9)
impulse response



hidden signal f( /)
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basically, we are doing a first-order interpolation/reconstruction
as in Topic 3...
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We are removing “high frequencies” keeping the local trends...



Indeed, this MA(9) is a low-pass filter, as expected !!!
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