HERETICAL INTRODUCTION
TO BAYESIAN INFERENCE

Luca Martino

Heretical = unorthodox = unconventional = alternative = you
cannot find it in books or papers....

Viva Galileo and Giordano Bruno

2024
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FIRST BAYESIAN in my opinion: RONALD FISHER, IN
1922-1924

» Likelihood principle ==> p(y|6)
» Maximum likelihood estimators: general procedure for
building consistent estimators!

» Need of a model to build the likelihood function.
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LIKELIHOOD FUNCTION

» y ==> observed DATA
» @ ==> vector or variable to infer

» p(y|@) ==> (conditional) DENSITY with respect to y
(normalized or normalizable)

» p(y|@) ==> IS NOT A DENSITY with respect to & — JUST
A FUNCTION with respect to 6
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EXAMPLE 1

(independent data - observations - measurements)
> observation model:

y,':0+€,', i:].,...,N,

i ~ N (|0, 0?).
» a piece of likelihood function is ¢;(0) = N (yi|0, o?):

1 — 0)?
exp (=07
2702 20°

Fixing the data y;, and “moving” 6.

i(0) = p(yil0) =

Note that § € R = (—o0, +00).
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EXAMPLE 1

> Complete likelihood function:

00) = p(y1, -, ynl0) = HP(YIW)» (1)
N oy
1 e (U5). @

1 \" Nk
:( 27ra2> exp <_; y202 ) (3)

Fixing the data y;, and “moving” 6.
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EXAMPLE 1
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EXAMPLE 2

» observation model: again independent data
y;:1—|—96i, i=1,...,N,
ei ~ N(€]0,1).
> a piece of likelihood function is £;(8) = N (y;|1, 6?):

ti(0) = p(yil0) =

Fixing the data y;, and “moving” 6.

Note that § € R = (0, +00).

1 (vi — 1)
exp [~ |,
V2162 202

7/19



EXAMPLE 2

» Complete likelihood function:

N
0(0) = p(y, . ynl0) = [ | p(yil6),
i=1

=

Fixing the data y;, and “moving” 6.

1—[1 \/QIWTGXP< (y1262) )
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EXAMPLE 2
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EXAMPLE 3

» Observation model: flipping/tossing a coin... Heads or
Tails....

Prob(y; =1) =6, (6)
Prob(y;=0)=1-6, 6¢€]0,1]. (7)

» Complete likelihood function:

N
(40) = por, oyl6) = [[ 071 —0) . (8)
i=1

Fixing the data y;, and “moving” 6.

Note that # € Rt = [0, 1].
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EXAMPLE 3
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JUST

THE MAXIMUM? OR WE HAVE MORE INFO?

From the figures: there are likelihood functions
“bigger/fatter”, narrow, with different symmetries etc.

Is the only useful information in the point where the
maximum is reached?
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LIKELIHOOD AS A DENSITY?

> Can we interpreted the likelihood as a density?

» only if.... the likelihood function is normalizable...

&/pM®W<w
JO

» in this case, we can define a density as

f&w=;ﬁMﬂ

> It looks that we are inverted the positions of y and ...
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EXTRACT MORE INFORMATION FROM THE
LIKELITHOOD FUNCTION

» Only the maximum of the likelihood is relevant?
» we can define “more estimators’ and variance etc.

» Cost function versus probabilistic approach...
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EXTRACT MORE INFORMATION FROM THE
LIKELITHOOD FUNCTION

(a) different possible “estimators”, (b) compute areas (e.g.,
variance, for confidence intervals, quantiles etc.) ...

> from optimization ==> to sampling
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LIKELIHOOD AS A DENSITY?

» What happens if the likelihood function is NOT normalizable?
namely, [ p(y|60)d6 = ...

» and/or if we have more additional information, belief about 67

» We can use a prior density g(6) and the Bayesian rule:

p(6ly) = p(ly),,(y|9)g(9)_
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MAIN ACTORS IN BAYESIAN INFERENCE

» The posterior probability density function (pdf) is

p(y|0)s(0)

oy p(y|0)g(6), (9)

p(Bly) =
where
» p(y|@) is the likelihood function (induced by the
observation model);
» g(0) is the prior pdf,
» Z = p(y): marginal likelihood/Bayesian evidence -
(useful for model selection and hypothesis testing)
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MAIN

BENEFIT OF BAYESIAN INFERENCE

All the problems in statistics can be solved extracting
information from the posterior density p(6|y) and
computing the marginal likelihood:

El©°]- [ 0°5(0ly)do (10)
Z = ply)= [ plyio)e(o)do. (1)
All the problems in statistics becomes quadrature

problems (computing integrals).

We a general procedure/recipe to do any statistical analysis.
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PROBLEMS OF BAYESIAN INFERENCE

» \We a general procedure/recipe to do any statistical analysis.
> But to do that:

> We have to compute/approximate complicated integrals.
» Dependence on the prior densities.
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