Heretical introduction to Bayesian inference

Luca Martino

Heretical $=$ unorthodox $=$ unconventional $=$ alternative $=$ you cannot find it in books or papers....

Viva Galileo and Giordano Bruno

First Bayesian in my opinion: Ronald Fisher, in

 1922-1924- Likelihood principle $==>p(\mathbf{y} \mid \boldsymbol{\theta})$
- Maximum likelihood estimators: general procedure for building consistent estimators!
- Need of a model to build the likelihood function.

Likelihood function

- $\mathbf{y}==>$ observed DATA
- $\boldsymbol{\theta}==>$ vector or variable to infer
- $p(\mathbf{y} \mid \boldsymbol{\theta})==>$ (conditional) DENSITY with respect to \mathbf{y} (normalized or normalizable)
- $p(\mathbf{y} \mid \boldsymbol{\theta})==>$ IS NOT A DENSITY with respect to $\boldsymbol{\theta}$ - JUST A FUNCTION with respect to $\boldsymbol{\theta}$

Example 1

(independent data - observations - measurements)

- observation model:

$$
y_{i}=\theta+\epsilon_{i}, \quad i=1, \ldots, N
$$

$$
\epsilon_{i} \sim \mathcal{N}\left(\epsilon \mid 0, \sigma^{2}\right)
$$

- a piece of likelihood function is $\ell_{i}(\theta)=\mathcal{N}\left(y_{i} \mid \theta, \sigma^{2}\right)$:

$$
\ell_{i}(\theta)=p\left(y_{i} \mid \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right)
$$

Fixing the data y_{i}, and "moving" θ.
Note that $\theta \in \mathbb{R}=(-\infty,+\infty)$.

Example 1

- Complete likelihood function:

$$
\begin{align*}
\ell(\theta) & =p\left(y_{1}, \ldots, y_{N} \mid \theta\right)=\prod_{i=1}^{N} p\left(y_{i} \mid \theta\right) \tag{1}\\
& =\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right) \tag{2}\\
& =\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{N} \exp \left(-\sum_{i=1}^{N} \frac{\left(y_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right) . \tag{3}
\end{align*}
$$

Fixing the data y_{i}, and "moving" θ.

Example 1

Example 2

- observation model: again independent data

$$
y_{i}=1+\theta \epsilon_{i}, \quad i=1, \ldots, N
$$

$$
\epsilon_{i} \sim \mathcal{N}(\epsilon \mid 0,1)
$$

- a piece of likelihood function is $\ell_{i}(\theta)=\mathcal{N}\left(y_{i} \mid 1, \theta^{2}\right)$:

$$
\ell_{i}(\theta)=p\left(y_{i} \mid \theta\right)=\frac{1}{\sqrt{2 \pi \theta^{2}}} \exp \left(-\frac{\left(y_{i}-1\right)^{2}}{2 \theta^{2}}\right)
$$

Fixing the data y_{i}, and "moving" θ.
Note that $\theta \in \mathbb{R}^{+}=(0,+\infty)$.

Example 2

- Complete likelihood function:

$$
\begin{align*}
\ell(\theta) & =p\left(y_{1}, \ldots, y_{N} \mid \theta\right)=\prod_{i=1}^{N} p\left(y_{i} \mid \theta\right) \tag{4}\\
& =\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \theta^{2}}} \exp \left(-\frac{\left(y_{i}-1\right)^{2}}{2 \theta^{2}}\right) . \tag{5}
\end{align*}
$$

Fixing the data y_{i}, and "moving" θ.

Example 2

Example 3

- Observation model: flipping/tossing a coin... Heads or Tails....

$$
\begin{align*}
& \operatorname{Prob}\left(y_{i}=1\right)=\theta \tag{6}\\
& \operatorname{Prob}\left(y_{i}=0\right)=1-\theta, \quad \theta \in[0,1] \tag{7}
\end{align*}
$$

- Complete likelihood function:

$$
\begin{equation*}
\ell(\theta)=p\left(y_{1}, \ldots, y_{N} \mid \theta\right)=\prod_{i=1}^{N} \theta^{y_{i}}(1-\theta)^{1-y_{i}} \tag{8}
\end{equation*}
$$

Fixing the data y_{i}, and "moving" θ.
Note that $\theta \in \mathbb{R}^{+}=[0,1]$.

Example 3

JUST THE MAXIMUM? OR WE HAVE MORE INFO?

- From the figures: there are likelihood functions "bigger/fatter", narrow, with different symmetries etc.
- Is the only useful information in the point where the maximum is reached?

Likelihood AS A DEnsity?

- Can we interpreted the likelihood as a density?
- only if.... the likelihood function is normalizable...

$$
Z_{\ell}=\int_{\Theta} p(\mathbf{y} \mid \boldsymbol{\theta}) d \boldsymbol{\theta}<\infty
$$

- in this case, we can define a density as

$$
\bar{\ell}(\boldsymbol{\theta} ; \mathbf{y})=\frac{1}{Z_{\ell}} p(\mathbf{y} \mid \boldsymbol{\theta}) .
$$

- It looks that we are inverted the positions of \mathbf{y} and $\boldsymbol{\theta} \ldots$

Extract more information from the LIKELIHOOD FUNCTION

- Only the maximum of the likelihood is relevant?
- we can define "more estimators" and variance etc.
- Cost function versus probabilistic approach...

ExTRACT MORE INFORMATION FROM THE LIKELIHOOD FUNCTION

(a) different possible "estimators", (b) compute areas (e.g., variance, for confidence intervals, quantiles etc.) ...

- from optimization $==>$ to sampling

Likelihood As A DEnsity?

- What happens if the likelihood function is NOT normalizable? namely, $\int_{\Theta} p(\mathbf{y} \mid \boldsymbol{\theta}) d \boldsymbol{\theta}=\infty \ldots$.
- and/or if we have more additional information, belief about $\boldsymbol{\theta}$?
- We can use a prior density $g(\theta)$ and the Bayesian rule:

$$
p(\boldsymbol{\theta} \mid \mathbf{y})=\frac{1}{p(\mathbf{y})} p(\mathbf{y} \mid \boldsymbol{\theta}) g(\boldsymbol{\theta})
$$

Main actors in Bayesian inference

- The posterior probability density function (pdf) is

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \boldsymbol{\theta}) g(\boldsymbol{\theta})}{p(\mathbf{y})} \propto p(\mathbf{y} \mid \boldsymbol{\theta}) g(\boldsymbol{\theta}) \tag{9}
\end{equation*}
$$

where

- $p(\mathbf{y} \mid \boldsymbol{\theta})$ is the likelihood function (induced by the observation model);
- $g(\boldsymbol{\theta})$ is the prior pdf,
- $Z=p(\mathbf{y})$: marginal likelihood/Bayesian evidence (useful for model selection and hypothesis testing)

Main benefit of Bayesian inference

- All the problems in statistics can be solved extracting information from the posterior density $p(\theta \mid \mathbf{y})$ and computing the marginal likelihood:

$$
\begin{align*}
E\left[\boldsymbol{\Theta}^{\alpha}\right] & =\int_{\boldsymbol{\Theta}} \boldsymbol{\theta}^{\alpha} p(\boldsymbol{\theta} \mid \mathbf{y}) d \boldsymbol{\theta} \tag{10}\\
Z=p(\mathbf{y}) & =\int_{\boldsymbol{\Theta}} p(\mathbf{y} \mid \boldsymbol{\theta}) g(\boldsymbol{\theta}) d \boldsymbol{\theta} \tag{11}
\end{align*}
$$

- All the problems in statistics becomes quadrature problems (computing integrals).
- We a general procedure/recipe to do any statistical analysis.

Problems of Bayesian inference

- We a general procedure/recipe to do any statistical analysis.
- But to do that:
- We have to compute/approximate complicated integrals.
- Dependence on the prior densities.

