
Heretical introduction
to Bayesian inference

Luca Martino

Heretical = unorthodox = unconventional = alternative = you
cannot find it in books or papers....

Viva Galileo and Giordano Bruno

2024
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First Bayesian in my opinion: Ronald Fisher, in
1922-1924

I Likelihood principle ==> p(y|θ)

I Maximum likelihood estimators: general procedure for
building consistent estimators!

I Need of a model to build the likelihood function.
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Likelihood function

I y ==> observed DATA

I θ ==> vector or variable to infer

I p(y|θ) ==> (conditional) DENSITY with respect to y
(normalized or normalizable)

I p(y|θ) ==> IS NOT A DENSITY with respect to θ — JUST
A FUNCTION with respect to θ
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Example 1

(independent data - observations - measurements)

I observation model:

yi = θ + εi , i = 1, ...,N,

εi ∼ N (ε|0, σ2).

I a piece of likelihood function is `i (θ) = N (yi |θ, σ2):

`i (θ) = p(yi |θ) =
1√

2πσ2
exp

(
−(yi − θ)2

2σ2

)
,

Fixing the data yi , and “moving” θ.

Note that θ ∈ R = (−∞,+∞).
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Example 1

I Complete likelihood function:

`(θ) = p(y1, ..., yN |θ) =
N∏
i=1

p(yi |θ), (1)

=
N∏
i=1

1√
2πσ2

exp

(
−(yi − θ)2

2σ2

)
, (2)

=

(
1√

2πσ2

)N

exp

(
−

N∑
i=1

(yi − θ)2

2σ2

)
. (3)

Fixing the data yi , and “moving” θ.
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Example 1
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Example 2

I observation model: again independent data

yi = 1 + θεi , i = 1, ...,N,

εi ∼ N (ε|0, 1).

I a piece of likelihood function is `i (θ) = N (yi |1, θ2):

`i (θ) = p(yi |θ) =
1√

2πθ2
exp

(
−(yi − 1)2

2θ2

)
,

Fixing the data yi , and “moving” θ.

Note that θ ∈ R+ = (0,+∞).
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Example 2

I Complete likelihood function:

`(θ) = p(y1, ..., yN |θ) =
N∏
i=1

p(yi |θ), (4)

=
N∏
i=1

1√
2πθ2

exp

(
−(yi − 1)2

2θ2

)
. (5)

Fixing the data yi , and “moving” θ.
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Example 2
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Example 3

I Observation model: flipping/tossing a coin... Heads or
Tails....

Prob(yi = 1) = θ, (6)

Prob(yi = 0) = 1− θ, θ ∈ [0, 1]. (7)

I Complete likelihood function:

`(θ) = p(y1, ..., yN |θ) =
N∏
i=1

θyi (1− θ)1−yi . (8)

Fixing the data yi , and “moving” θ.

Note that θ ∈ R+ = [0, 1].
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Example 3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
10-3 N=10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
10-22 N=100

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
10-212 N=1000

11 / 19



Just the maximum? or we have more info?

I From the figures: there are likelihood functions
“bigger/fatter”, narrow, with different symmetries etc.

I Is the only useful information in the point where the
maximum is reached?
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Likelihood as a density?

I Can we interpreted the likelihood as a density?

I only if.... the likelihood function is normalizable...

Z` =

∫
Θ
p(y|θ)dθ <∞

I in this case, we can define a density as

¯̀(θ; y) =
1

Z`
p(y|θ).

I It looks that we are inverted the positions of y and θ...
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Extract more information from the
likelihood function

I Only the maximum of the likelihood is relevant?

I we can define “more estimators” and variance etc.

I Cost function versus probabilistic approach...
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Extract more information from the
likelihood function

(a) different possible “estimators”, (b) compute areas (e.g.,
variance, for confidence intervals, quantiles etc.) ...

I from optimization ==> to sampling
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Likelihood as a density?

I What happens if the likelihood function is NOT normalizable?
namely,

∫
Θ p(y|θ)dθ =∞....

I and/or if we have more additional information, belief about θ?

I We can use a prior density g(θ) and the Bayesian rule:

p(θ|y) =
1

p(y)
p(y|θ)g(θ).
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Main actors in Bayesian inference

I The posterior probability density function (pdf) is

p(θ|y) =
p(y|θ)g(θ)

p(y)
∝ p(y|θ)g(θ), (9)

where

I p(y|θ) is the likelihood function (induced by the
observation model);

I g(θ) is the prior pdf,
I Z = p(y): marginal likelihood/Bayesian evidence -

(useful for model selection and hypothesis testing)
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Main benefit of Bayesian inference

I All the problems in statistics can be solved extracting
information from the posterior density p(θ|y) and
computing the marginal likelihood:

E [Θα]=

∫
Θ
θαp(θ|y)dθ (10)

Z = p(y)=

∫
Θ
p(y|θ)g(θ)dθ. (11)

I All the problems in statistics becomes quadrature
problems (computing integrals).

I We a general procedure/recipe to do any statistical analysis.
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Problems of Bayesian inference

I We a general procedure/recipe to do any statistical analysis.
I But to do that:

I We have to compute/approximate complicated integrals.
I Dependence on the prior densities.
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