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Outline of the course

Tema 1: Discrete signals and systems in the temporal domain
» 1.1 Recall of the signals and systems in the continuous time
» 1.2 Signals in discrete time
» 1.3 Systems in discrete time
= 1.4 Convolution in the discrete time

Tema 2: Discrete signals and systems in frequency domain
Tema 3: Sampling

Tema 4: Discrete Fourier Transform

Tema 5: Zeta transform

Tema 6: Introduction to the design of the discrete filters

d Comments:

Discrete signals can be easily used with computers/digital machines, processors

Please, study/recall the geometric series and the arithmetic series
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1.1 Recall of signals and systems in continuous time

> ¢What is a signal?
» |s a “mathematical model” (a function) which represents a variable of interests,

that changes with the time.

= Examples of signals: radio, volts, temperature, ...

x(t)

signals and systems in
continuous time (CT):
where t takes continuous
values

» One-dimensional (temperature in a place) vs. Multidimensional (for instance,

an image)
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1.1 Recall of signals and systems in continuous time

» Continuous signals vs. discrete signals

= Continuous: defined for any real values.
— Example: voice.

= Discrete: defined for only for certain time values.
— Example: final prize of stocks (in a stock market), every day.
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REMARK: here we just look the x-axis... 3
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1.1 Recall of signals and systems in continuous time

» Digital Signals vs. Analog Signals

= Digital Signals: take only certain values (a finite number of values, in general)
within an interval of time.

» Analog Signals: can take a (infinite) number of continuous values in a (bounded or
unbounded) interval.
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1.1 Recall of signals and systems in continuous time

» Deterministic Signals vs. Stochastic Signals

= Stochastic Signals: contain randomness
= the definitions, formulas and the treatment change

9.5



Operations with Signals

> What can we do?

» Any mathematical operation.

» Examples:

= Level/amplitude change: =— Ax(t)
= Translation: — z(t —to)
= Time inversion: — z(—1)
= Change of scale: , — x(at)

t
= Derivation — 3;()

t ¢
= integration — / z()dr

0
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Special cases of signals

» Real and Complex signals

= Complex signal

z(t) = zr(t) + jai(t)

Example of a complex signal: y(t) = V3t = COS(O-St) + jSin(O-Bt)
Example of a real signal: () = cos(0.25t)

» 0Odd and even signals: both real signal such that
Te(t) = ze(—1)
To(t) = —xo(—t)

» Generally, we can write xe(t)
Oma o)
() = To(l) + xo(T
T~ w(t) = 5 le(t) — a(—1)]



Special cases of signals

» Hermitian and anti-hermitian signals:

= Hermitian signals (if real, then is an even signal):

x(t) = ax*(—t) Vt

Tiempo discreto

= anti-hermitian signals (if real, then is an odd signal):

= —x*(—t)Vt

x(t)

» Periodic signals:

CT: 3T >0|z(t)=zt+T), vt

-T/2

o

-T‘

0 T

T 4 t

T2

T is the fundamental period,
note that the signal is repeating
each 2T, 3T, ...

Question: if we sum different
periodic signals (with different
period), the obtained signal is
periodic? And if we multiply
different periodic signals?

ASS
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Special cases of signals

» Complex Exponential (CE)

2(£) = cest = peifeoteiuot — @@
v

T Amplitude

- — ’I“eje complex
s =04 Jwy wo=2rf
Euler Formula: e/*°! = cos(w,t) + jsin(w,t)
Re{x(t)} = re?tcos(wot + 6)

A
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Special cases of signals: delta and step

» Dirac delta or impulse: §(¢)

Note it has
5a(t) o A unitareal

O(t) = lim oA (t =
= Properties: ( ) A—0 A( '

z(t)6(t — to) = x(to)d(t — to)

o(t) = / T ()8(t — T)dr

— 00

» Nofte that the Dirac delta in t=0 diverges (takes the values ‘infinite”); it is not a stirctly
function, it is a generalized function (or a distribution)

u(?)
> Heaviside step function u(t): 1 Lt

u(t) = {1, = g 2
0,t <0 1
t - Ramp function

d
u(t) = / o(x)dx u(t) = P max{?,0} "

N 10
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Special cases of signals: rect and sinc

» Unit Rectangle: p(t)

1, silt]<1/2
p(t) = .H /
0, sift|>1/2

= Without unit area: pr(t) = p(t/T)

() = 1, sift|<T/2
PR = N0, il > T1/2

> Sinc function: sinc(t)

. __ sin(wt)
sinc(t) = —~
= Without unit area:

sinc(mt/T)

sincp(t) = sinc(t/T) = )T

*IMPORTANT REMARK: The zeros are at multiples of T !!!
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Properties of a signal

» Mean value (formulas for a deterministic signal): the definition depends if the
signal is periodic or not, etc.

» Energy:

E = / (t)|2dt — — For non-periodic signals

» Mean Power:

| (T/2
P = lim — / |:E(t)|2dt => Energy in a unit of time
T — o0 T —T/2

> Recall:

» There are power signals and energy signals:
— Finite Energy = then the power is zero = energy signal
— Finite Power =» then the energy is infinite = power signal
— Some signals are neither energy nor power signals.

— For a periodic signal: if the energy in one period is finite, then it is a power signal

12



Continuous systems: models

» System: any operation/transformation over the signal

Physical Model

"in(t)._ .
— Amplifier
e

) 'out(t

» Example 1 (CT): circuit RLC, described by differential equations

“““““““
nnnnnn

xt () | it C
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System Model

x(t) —»

System
(Math.
- model)

— (1)

i(t) = %D

d

LOTHY) 4 oW 4 () = 2(t)

*Note: different physical models can be represented by the same mathematical

model (e.qg., differential equations).

13
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Properties of a system
(Causality, Linearity, temporal invariance, etc.)

» Why to know?
» |mportant practical consequences for the analysis

L xy (1) yi(t)
! LTI - !
. 4 g t

0 1 2 =z 6 1 2 2

14
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Causal system

» The output y(t) in a time instant depends only to the values of the input x(t)
until this time instant (no from “future” values of x(t)).

» ALL physical systems based on real time are causals, sice the time goes
only forward....

» For Spatial signals/images, it is not the case. We can go up and down, left
and right...

> Itis not the case the analysis for recorded signals (we can go in the
“future”...).

15
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Causal system

» Asystem =(t) = y(l) is causal:
When: z1(t) — y1(t) x2(t) = y2(t)
if: 331(15) = ng(t) \a’ < to
then o1 (t) = ya(t) Vit <ty
— If two input signals are the same until tO, the output signals are the same unitl

tO.

Anti-causal: the output y(t) only depends on the future values of the input x(t).
= Non-causal: the output y(t) only depends on the past values and on the future

vaules of the input x(t).

*Note: for linear and invariant systems (LTI) there is another (easier) method to see

that.
16
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Are they causal?

» Examples:
y(t) = z(t + 1)
y(t)=21["_
y(t) = x(t )—w(t+05)
y(t) = t*(x(t) — x(t +0.5))

17
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Temporal invariance (TI)

> Definition:

Consider: z(t) — y(t)
then: z(t —to) = y(t — to)

Examples: are they temporal invariant?

y(t) = sin(z(t))
y(t) =t-xz(t)

18
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Periodic input in a Tl system

» If the input is periodic, the output will be periodic,

x(t+T)=xz(t)
x(t) — y(1)
Due to the system TI then:

z(t+T)—=ylt+T)

A i

Since Then the output are
the same,
z(t+T) = z(t) ie,y(t) =yt +1T)

the output is also
periodic

19
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Linearity
» Many systems are non-linear.

» But in this course, we focus on the LINEAR SYSTEMS

> Why?
» They model several real systems as well.
» They are analytically tractable.

20
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Linearity

» Definition:
z1(t) — y1(t) T2(t) — ya(t)
ax(t) + bxs(t) — ayi (t) + bya(t)

= For linear systems: zero input — zero output

Examples:

21
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Without Memory

» If the output only depends on the input value at the same time instant.

» Mathematical definition:

Examples:

> y(t) must just depend on x(t)

y(t) = x(t)

y(t) =x(t —1)

y(t) = [*__a(r)dr
y(t) = 2(x(t) — 2°(t))*

22
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Stability

» Stable system: bounded inputs generate bounded outputs.

vt, |e(t)] < B, (B, eR%) = Vt, y(t)l < B, (B, € R*)

» Example:
Consider the system: z(t) — y(1) = ffoo f(r)dr

yiU P B = o LL) The system is not stable, since
: L. P there exists several possible
o esiable bounded inputs which produce
r ; ouputs that diverge (think in any
oot 8 S B, . input signal where the result of
EERER the integral is an increasing
r S ’ . area)
Exercise: study this system =[xt —r)dr

23
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Invertibililty

o T{} denotes any
> Definition: transformation

AT y(t) =T{z(t)} = «(t) =T~ {y(t)}

» For instance, if two different entries/inputs, x1(t) and x2(t), produces
the SAME output y(t), then the system is not invertible.

Exercise: y(t) =0
y(t) = [1_a(r)dr
y(t) = z%(t)
y(t) = 2xz(¢)

24
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Interconnection among systems

» Represented by a block diagram:

Cascade — >

Parallel

Feedback

\ 4

25
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Linear and Temporal Invariant (LTI) systems

» We focus on LTI systems
» Good models for several real applications
= they are analytically tractable
= they are simple” from a mathematical point of view
= They are also simple to design (design of filters)
» Main advantages:
= Qutputs can be computed by convolution.
» The exponential functions are eigenfunctions of the LTI systems.

) 1‘1(()

26



ASS

LTI system in CT: convolution by integral

Y

(t) CT LTI ~y(t)

h(t)= impulse response (i.e., to the Dirac delta)

+o0o
(1) = 6(1) = y(t) = /_ S()h(t — 7)dr
+oo
y(1) = /_ 5(t — 7)h(r)dr
+oo
y(1) = /_ h(F)3(t — T)dr = h(t)

h(t) represents completely the LTI system 27
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Computation of the Convolution

» Calculating a convolution:
= Convolution with a delta 6(¢) =» easy (we obtain the signal «(t))
= Convolution with exponentials =» easy more or less (solution: another exp.)
= Generic Convolution =» more difficult

4 steps:

— s x(7)h(t — 7')—>ffooo z(T)h(t — 7)dT

Multiply Integrate

28



Properties and examples of convolution
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> Neutral Element is the unit impulse (Dirac Delta): 0 (t)

x(t) * o(t)

» Commutative:

2(t)—> | h(t) | —> y(?)

» Distributive:

z(t)—> | ha(t) + ha(t)

x(t) —

> hl (t)

—> hg (t)

= x(t)

— z(t)*xd(t —tg) = x(t — to)

M
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Properties and examples of convolution

» Associative:

y(t) = [x(t) * hy(t)] * ha(t) y(t) = x(t) * [h1(t) * ha(t)]
y(t) = z(t) * [h2(t) * hi(2)] y(t) = [z(t) * ha(t)] * ha ()
xz(t) —sl hi(t) —s ho(t) —> y(t) x(t)—s hi(t) *x hao(t) —> y(t)

» Response to the step function:

(V)
VN
~
N—"
I
c
Ve
~
N—"
*
>
VN
~
N—"
I

h(t) xu(t) = ffoo h(T)dr

*Remark: The equivalences above are valid only if the intermidiate steps are finite. The
convolution has a structure of commutative group.
30



ASS

Properties of LTl systems = become properties about h(f)

» Causality:
h(t) =0, Vt<O0
> Stability:
ffooo |h(T)|dT < 0o — h(t)

» Without memory:

h(t) =0, Vt#0— y(t) = cte.x(t)
> Invertible:

h(t) * hi(t) = 6(t)

31
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Eigenfunctions of LTI systems: exponentials

» What is an eigenfunction?

Y

Pr(t)

Generic
System

=\/\f_/¢k(t)

eigenfunction

N

autovalor eigenfunction

= Qutput with input an eigenfunction — the same eigenfunction multiplied for a

scalar number/factor (called eigenvalue)

= For the linearity of LTI systems:

z(t) = D) axPr(t)

Y

LTI

~y(t) = 2 1 Aearodr(t)

32
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Exponentials as eigenfunctions of LTI systems
Very important slide....

z(t) =est —s h(t) | —s y(t) s: complex number

y(t) = [Zo h(m)e =T dr = [ h(r)esmdrles = H(s)p™
H(s) is also complex number, in general eigenvalug €igenfunction

Y

x(t) h(t) () H(s)= [T h(t)e stdt

Laplace Transform

» If x(t) is a combination of exponential complex signals we get :

2(t) = Ek: are®t = y(t) = keskt

Zeros, poles.... We can understand this study 33
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Matlab code examples: inputs

%Sefial x1(t)

fs = 10000; t = -2:1/fs:2; w = 1;

x1l = tripuls(t,w);

figure; plot(t,x1l); xlabel ('Tiempo'); ylabel ("Amplitud'); title('xl(t)'); ylim([O0 1.5]);
x1lim([-2 2]); axis([xlim ylim]);

$Sefial x2(t)

t= -6:1/fs:6; w2 = 0.5; d= -10:w2*2:10;

x2=pulstran(t,d, "'rectpuls',w2);

figure; plot(t,x2); xlabel ('Tiempo'); ylabel ('Amplitud'); title('x2(t)"); ylim([0 1.571);
x1lim([-2 2]); axis([xlim ylim]);

%Seflal x3(t)

t = -6:1/fs:6;

x3 = sin(t*2*4*pi);

figure; plot(t, x3); xlabel('Tiempo'); ylabel ('Amplitud'); title('x3(t)'"); ylim([-1.5
1.5]1); xlim([-2 2]); axis([xlim ylim]);

$Sefial x4 (t)

t = -6:1/fs:6;

x4 = cos (t*4*pi);

figure; plot(t,x4); xlabel ('Tiempo'); ylabel ('Amplitud'); title('x4(t)'); ylim([-1.5
1.5]); x1im([-2 2]); axis([xlim ylim]);

35
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Matlab code examples: h(t) and outputs
%Sefial h(t)
t= -2:1/fs:2; w3 = 0.1;
h = 0* (t<=-w3) + 1*(t>-w3).*(t<w3) + 0* (t>w3);
figure; plot(t,h); xlabel ('Tiempo'); ylabel ('Amplitud'); title('h(t)'); ylim ([0 17);
x1lim([-2 2]); axis([xlim ylim]);
%Seflal y1(t)
yl = (1/fs)*conv(xl, h); th = -4:1/fs:4;
figure; plot (th, yl); xlabel ('Tiempo'); ylabel ('Amplitud'); title('yl(t)"'); ylim([-0.5
0.51); x1lim([-2 2]); axis([xlim ylim]);
$Sefial y2(t)
y2 = (1/fs)*conv(x2, h); th = -8:1/fs:8;
figure; plot (th, y2); xlabel ('Tiempo'); ylabel ('Amplitud'); title('y2(t)'); ylim([-0.5
0.51); x1lim([-2 2]); axis([xlim ylim]);
%Sefial y3(t)
y3 = (1/fs)*conv(x3, h); th = -8:1/fs:8;
figure; plot(th, y3); xlabel ('Tiempo'); ylabel ('Amplitud'); title('y3(t)'"'); ylim([-0.5
0.5]); x1im([-2 2]); axis([xlim ylim]);
%Seflal v4(t)
y4 = (1/fs)*conv (x4, h); th = -8:1/fs:8;
figure; plot(th, y4); xlabel ('Tiempo'); ylabel ('Amplitud'); title('y4(t)'"'); ylim([-0.5
axis ([xlim ylim]); 36

0.51); xlim([-2 21);
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Exponential functions (real and complex)

» Very important for the applications

» Recall that the solution of a linear differential equation (LDE) with constant
values can be expressed as combination of exponentials (LDE equivalent to
Convolution !!).

» Recalling Complex Exponential functions

est, if s=jw — eI — cos(wt) + jsin(wt)

37



ASS

Signals Expressed as sum of complex exponentials?

» For PERIODIC SIGNALS: Fourier SERIES (FS)
» FOR NON-PERIODIC SIGNALS: Fourier TRANSFORM (FT)

» There exists a Generalized FT for periodic signals considering delta
functions...and assuming that some integrals that do not exist, converge...
people accept that since there is a perfect match with FS.

» Direct and inverse equations of FT (sintesis and analysis)

1 [ , :
x(t) = %/ X (jw)e’" dw _s Direct! sintesis
— 0

oo
X (jw) :/ g;(t)e_jt’wdt ——> Inverse/ analysis

— OO

» Application to LTI systems; compute the FT of h(t) = frequency responce

38
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For the future and for the examen

» Please study this topic! (previous slides):
= properties
= Convolution
= special signals (delta, step, ramp, exponential)

> Fourier:

» Recall the main transforms
= Direct and inverse equations of FT

39
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Where we are

» Tema 1: Discrete signals and systems in the temporal domain
» 1.1 Recall of the signals and systems in the continuous time
» 1.2 Signals in discrete time
= 1.3 Systems in discrete time
= 1.4 Convolution in the discrete time

40
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1.2 Signals in discrete time

» We will see:
= Discrete signals versus continuous signals and digital signals
= classifications
= signals of interests
= Operations

41
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Analog/continuos versus Digital

* Continuos signal

A

Sampling

v

DISCRETE SIGNAL

nniine

Sampling + Quantization
(it only takes a finite
number of values)

* DIGITAL SIGNAL

42
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Mathematical definition/notation for a discrete signal

» A discrete signal is a sequence of real numbers and is denoted as:

x[n]

x[n], y[TL], Z[n] +x[0]

[f
1

x[-1]] x[1]

2]

!
3

X[
[1eelly 1o
23456789 ] n

» In a Discrete Signal:

» The independent variable (n) takes integer values, i.e., discrete
» The dependent variable (x, y, z...) takes real values, i.e., continouos

43
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z[n]=n+5

‘.,SJ,TT%THNHHJO n
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Basic parameters

» Area, mean value, energy, power:

ENERGY

Ey,= ) la[n]?

Nn=—0o0

= ..+ |21 + [2[0]° + [2[1] ...

MEAN VALUE
] N
#=(oln)) = Jim oy D sl
n=—N

POWER
1 N
— 1 112
Pe = M oN 1 ”:Z_N =]

*Remark: with the notation |.| we have denoted the module of a vector (or a complex
number), then the definition is valid also for complex signal.

45
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Basic parameters

» We can also define the energy in a finite interval - N <n < N as

Ex= ) |z[n]]?

n=—N

» Then the energy of the signal, E, is:

N — o0

» Also the power can be expressed as function of £y ,

1
P= 1
Nobeo 2N + 1

En

46
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Signals in discrete time (DT): classification

» A discrete signal can be:

= Energy signal: (finite energy and zero power) E,>0P,=0
= Power signal: FE, =001, <o
= Signal with infinite power: FE,=00,,; =00

» We focus on energy ang power signals.

47
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Basic signals: delta and step functions

Kronecker delta

-10 -5

Heaviside step function

-10 -5

What is the difference with
the Dirac delta?

10 7N

48
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Basic Signals: sin and cos

x[n] = cos(Qon) x[n] = sin(Qon)

N SRR A RS R0 2 SR
'~ % TILITI]

g, = 2F It T+T 1 K20 RECIAL,

=70 T E | T It
Oy = 21 e .QTTTTTTTQ,_
P20 [{4 RIREY
O, 27 _.,n?TTTTThTTTTho.,_ _Laet??1U1T

T 40 ‘ 11111388
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Basic Signals: sin and cos

» Properties of the sinusoidal signals in DT:
= Two sinusoidal signals with angular frequency of

Qo, Ql = QO + 27
are identical.

= They are periodic if and ony if the angular frequency can be expressed as:

m ‘ NON-
Qo =2m— osin) = SERIODIC 1

Where N and m are integers without common factors. In this case the period is N.

50
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Basic signals: Real exponential/power function

xz[n] = Ca"

T sasast mTTﬂm Ceenengage 1T T” v

7 Mt L1

51



Basic signals: Complex exponential

Smiz(n]}

@ gy
o T JHJWW”JJJ]W Lol
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Basic signals: Complex exponential with “damping”/envelope

_ e((z—i—jQ)n an _jn

x[n] =e""e

Reixnl}y hT 't Smiz(n]}
*

11 l,,,‘ .““'.”

The drop is given by
a, whereas the
oscillations by ()

oo i
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Basic operations about the dependent variable

> Change of scale of y[n]: yln| = K - x[n]

> Sum: y[n| = w1[n]+x2n]

54
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Basic operations about the dependent variable

]
4 IR B S B B 0 4 0 A 5 0 SRR
2 e S
e EEfREEESNES
o R [ I
e
2 e Ve ozl 4yl
< IR B A0 A A0 Y 0 I H "" —oe
; a9 e MY
e EEfREScee
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Basic operations about the independent variable
» Translation/movement:

no < 0 — To the right

= —
yln] = a[n+nol {no > 0 s To the left

= The value ng must be an integer

» Symetric signal with respt to the the y-axis:

» Change of scale: (rational values in DT)

expansion 0<ax<l1 See other

y[n] - :U[cm] contraction a>1 slides....

56
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Basic operations about the independent variable

z[n]

,,,,,,,,lTTTT......
~10 -5 0 5

x[n—2]

TTTLT,,,,

~10 -5 5
z[2n)]
~10 -5 5
l 2[n/2)
S SV S SN P S
-10 -5 0 5

Y
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Basic operations about the independent variable

» IMPORTANT: en DT, the scale change produces the following
consequences:

= During compression, we lose samples
= During expansion, we have to add new samples (typycally zeros)

» REMARK: in the topic “SAMPLING”, we will see how to do it without having any
problems/issues
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Original Signal:

Difference
(related to
derivative in CT):

x[n] — x[n — 1]

y[n]

Sum (also called

“accumulator”, related

to the integral in CT):
n

Tiempo discreto
ASS

Difference and sum
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Basic Properties

» 0Odd and even signals:

= Even signal x[n): x[n] = x[—n]
= Odd signal x[n]: 33[71] = —a:[—'n,]
» Periodicity
= Signal x[n] is periodic with periodic N if: ~ x[n] = x[n — N]

» Decomposition by Deltas
= Any discrete signal can be expressed as a train of deltas:

oo

zn] = )  axdln—kl= Y  ax[k]é[n— k]

]{;:—oo kZ—OO
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1.3 Systems is discrete time

» We will see:
= Discrete Systems
» Properties
» |nterconnections
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Definition of the system DT

» As in the CT we have graphically:

z[n] —= y(n]

x|n| — Discrete syst.

— y[n]

where x[n] and y[n] are the input signal and output signal, respectively.
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Basic Properties of a DT system

» Memory:
= The ouput at any time t depends only to the input at time t.
» Invertible

» Causalidad:

= Qutputs depend only from the present and from the past (no future)
» For LTI systems, y[n] should NOT depend on x[k] with k>n

> Stability:
= An input is bouded (finite amplitud) produces a bounded output (finite amplitud)

63



Tiempo discreto
ASS

Basic Properties of a DT system

» Temporal invariance:

If: x[n] — y[n]

Then: x[n — no] — y[n — ng]
» Linearity:.

If: x1[n] = y1[n] z2[n] — ya[n]
Then: axi[n| + hxa[n] — ayi[n] + by [n]

» Interconnections:
= seris, parallel, feedback
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1.4 LTI systems and convolution in DT

> We will see;

= Convolution in DT (it is a sum) and its properties
= output of LTI systems as a convolution
= (Linear) difference equations with constant coefficients
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Definition of LTI systems in DT

» We focus on linear and invariant systems in DT:

x[n] — LTl systems  — y[n]

If: x[n] — yn]

Then: z[n — no| — y[n — ng|

If: x1[n] — y1[n] z2[n] — ya(n]
Then: axq[n] 4+ hxa[n] — ayi[n] + by [n]

Tiempo discreto
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Response to the impulse in DT

» Impulso response:

on] —>

SLTI

— > h[n]

» For the time invariance:

oln —ngl —>

SLTI

— s hln — ng]

» For the linearity:

on —nol+d0[n —ni]—s

SLTI

— s h{n —ng|] + hln — n4]
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Response to the impulse in DT

5[n) | | hin]
d[n — 5] hln =]
8[n] + 8[n — 5] | L\ e hlnj+h[n =05
—'15"'_'5'*0“"[*-* t'ls"";'"J TT'5 i2
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Response to the impulse in DT

» Response to train of deltas = sum of response to the impulse (for the
linearity)

i apd[n — k| — | SLTI — f: arphln — k]

k=—o0 k=—o0

» Since x[n] can be expressed as a train of deltas, then:

z[n] = i s[k]6[n — k] — | SLTI | - i z[k|h[n — k]

k=—o0 k=—o0
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Convolution in DT

» Hence the output y[n] can be obtained as the convolution of h[n] with x[n]:

0

yln] = Y a[k]hln — k] y[n] = x[n] * hn]

k=—o0

» Convolution of two signals in DT; notation:

x1[n] * xo[n] Z x1|k]xan — ki

k=—o00
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Computing of the convolution

» For any time instant n:

1) Express in the domain k:

2) Invert:

3) Move n units:

4) Multiply:

5) Sum:

h[k] z[K]
h:;k]
hin — k]

I=>x[k]h[n —k) =
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Alternative way of computing a convolution

h[n]

2 1
Alternative way: © o—eo1loe
1) We can express one signal as sum "
of deltas o ,f il
2) Then we make the convolution with 54 T
the other signal above in step 1) < 0 ool l ool
3) We sum all the signals obtained in E o °
step 2) 0.5h[n]
3" —
g

In the example on the right = 2h[n-1]
We can express x[n] as:

z[n] = 0.50[n| + 26|n — 1]
y[n] = h[n] * x[n] = 0.5h[n] + 2h[n — 1]

i)

Amplitud
o = DN
()]
——©
—©
———oO
()]

Length of the convolution is 4:
Start: sum of the starts (0+0=0)
End: sum of the ends (2+1=3) —
(considering non-zero samples) Length of the convolution is N+M-1 | 72
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Properties of LTI systems in DT

» The response to the impulse h[n] provides a complete characterization of the
LTI system.
» See below:

= Causality: hin] =0,Yn <0
= Stability: Z h[n]| < oo
" Memory: hin] =0,Vn # 0

Invertibility: h{n] x h;[n| = d[n]
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Properties of the LTI systems in DT

= Distributive property, parallel systems:

yln] = x[n] * [ha[n] + ha(n]] = x|n] * hi[n] + x[n] * ha[n]
= Associative property, systems in series:

yn| = x[n] * hy[n] * ho[n] = x[n] x ha[n] * hy[n]
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Properties of the LTI systems in DT

» The output y[n] of a LTI system with input a complex exponential, is other
complex exponential with the same frequency and, generally, different phase
and amplitude:

x[n] = Al (Contd) _o | LTI system — y[n]

Y (C / A/ e . / / . /
n] = A/ej(ﬂ()n‘l‘ﬁb) — _Ae(jQ()n-l—fb)e](d) —9) — _ej(gb —) rn
yln] y y ]
» The complex exponentials are eigenfunctions for the LTI systems.

» The multiplying factor is the correspoding eigenvalue (corresponding to
frecuencia Q)

(Apei®) (Az'ejw'—qb))
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Properties of the LTI systems in DT

» The output of an LTI systems when the input is a sum of complex

exponentials with different frequencies, is the sum of the same complex
exponentials with different phase and amplitude

K K
x[n] = Z el | LTI systems — y[n] = Z A el . gi(Sin)
k=0 k=0

» Then, the output y[n] NEVER will be contain a frequency that is not
contained in the input x[n].
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Linear Difference Equations
A LTI systems in DT can be expressed using linear difference
equations with constant coefficients.

Definition: y[n] = Zf;l apyln —pl + oo bnln — m]

They are ARMA (autoregressive-moving average) filters
If alla_p=0 = FIR (FINITE IMPULSE RESPONSE) filters

If all b_m=0 exceptb 0 =>» IIR (INFINITE IMPULSE RESPONSE)
filters
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LTI systems by Difference Equations

0 Examples:

x[n] y[n]
><A> > x[n] . y[n]
t\\“/ >
D
D
2 M
Y 2
D
y[n] = z[n] + 2y[n — 1]
3

y[n] = x[n] — 2x[n — 1] 4+ 3x[n — 2]

Tiempo discreto
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