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Relationship of information theory to other fields.

Materials from the book of T. M. Cover and J. M. Thomas, “Element of information theory”, Wiley.



Measure of Information (of an event)

Given a probability mass function (pmf) p(x) of a random
variable X.

The information, associated to an event with probability p(x),
is defined as

I(x) = —log[p(x)] Units: bit

Less frequent event == => A LOT OF information.
More frequent event === SMALL information.
Base of the Log is 2 (we do not lose generality).



Auto-informacion

una medida de informacién debe cumplir las siguientes condiciones:

1. El contenido de informacién de un suceso, que denotamos Ix(z;) y se denomina
auto-informacion, debe depender de la probabilidad del suceso y no del propio
suceso

Ix (z:) = f(px(z:)).
2. Debe ser una funcién decreciente de la probabilidad.
px (z:) > px(z;) = Ix(z:) < Ix(z;).
3. Debe ser una funcién continua de la probabilidad.
4. Si pxy(z:,y;) = px(z:) - py (y;), entonces

Ixy(zi,y;) = Ix(z:) + Iy (y;)-



Se puede demostrar que la inica funcién que cumple estas propiedades es la funcion
logaritmica. Por tanto, la auto-informacién se define como

Ix(z;) = —log(px (z;)).

La base del logaritmo no es importante. Lo tinico que implica son las unidades en que
se expresa la informacion. Si la base es 2, las unidades son bits, y si se usa el logaritmo
natural o neperiano, las unidades son nats.



Discrete Entropy

Expected value of the information

H(X) = Hy ==, p(x = i)log[ p(x = )]

IT IS A SCALAR VALUE.
It can be considered as a DISPERSION MEASURE of the pmf p(x).
The notation H(X) means that is related to the r.v. X.

H(X) represents the UNCERTAINTY over the values that the
random variable X can take.



Discrete Entropy

The entropy of a random variable X with a probability mass function
p(x) is defined by

‘ H(X)= - p()log, p(x).

(1.1)

We use logarithms to base 2. The entropy will then be measured in bits.
The entropy i1s a measure of the average uncertainty in the random vari-
able. It is the number of bits on average required to describe the random
variable.

H(X)=-) p(x)logp(x).

xekX

» The log is to the base 2
and entropy is expressed in bits. For example, the entropy of a fair coin
toss is 1 bit. We will use the convention that|{0 log 0 = 0./ which is easily
justified by continuity sincg x log x — 0 as x — 0. |Adding terms of zero
probability does not change the entropy.




Example Consider a random variable that has a uniform distribu-
tion over 32 outcomes. To identify an outcome, we need a label that takes
on 32 different values. Thus, 5-bit strings suffice as labels.

The entropy of this random variable is

32 32
1
H(X)=— )1 () =— ) —log— =log32 =73 bits,
(X) gpo) gD == gloez; = log its
which agrees with the number of bits needed to describe X. In this case,
all the outcomes have representations of the same length.



Example Suppose that we have a horse race with eight horses

taking part. Assume that the probabilities of winning for the eight horses

are (' Y Y T A ). We can calculate the entropy of the h
1% 16 o5 51 83 ) py of the horse

race as

11 1.1 1.1 1. 1 11
H(X)= ——log~ — —log~ — ~log — — — log — — 4— log —
(X)=—7log75 —glogz —glogg —Jgloge —4gzloe

= 2 bits.



If the base of the logarithm is b, we denote the entropy as Hp(X). If
the base of the logarithm is e, the entropy is measured in nats. Unless
otherwise specified, we will take all logarithms to base 2, and hence all
the entropies will be measured in bits. Note that entropy is a functional

of the distribution of X. It does not depend on the actual values taken by
the random variable X, but only on the probabilities.

Lemma H(X)=0.

> 0.

Proof: 0 < p(x) < 1 implies that log p(x)

Lemma Hp(X) = (log, a)H,(X).

Proof: log, p = log,alog, p. O



Example Let

a with probabilitys,
v_ | b with probability I,
“ ) ¢ with probability%.
| d  with probabilitys.
The entropy of X 1s
H(X)= —llogl — llogl — llogl — llogl = z bits.

2 "2 4 "4 8 "8 8 "8 4

The entropy does not depend on the values that the r.v. X can take.
(in the example above they can be considered generic math-variables or simply “letters”....)



IMPORTANT:

The entropy of a random variable is a| measure of the uncertainty|of the
random variable; it is a measure of the amount of information required on
the average to describe the random vanable.

H(X)=0 if the probability is of type
0,0,0,1,0,....0

H(X)=log N (i.e, its maximum value) if the probability is of type
1/N,1/N, 1/N, 1/N, 1/N,.... 1/N



Entropy: measure of dispersion

H(X) is a measure of DISPERSION (UNCERTAINTY):

MAX DISCRETE ENTROPY:
UNIFORM PMF DELTA

11 1|H, =log, N

i1

MIN DISCRETE ENTROPY:

Olog,0=0

H, =0

we do not consider the continuous scenario: Differential
entropy (continuous case) is max when p(x) is a Gaussian

density.




Relationship with the variance

* Another dispersion measure is the variance. BUT the variance depends on the

support of the r.v. X (i.e., the values than X can take).

T

T

In this two pmfs: the entropy is the same!!! But the variance no!

* Forinstance, we can permute the positions of the deltas and the entropy does not

change.



Example Let

X = 1  with probability p,
— | 0 with probability 1 — p.

Then def
H(X)=—plogp— (1 — p)log(l — p) = H(p).

0 01 02 03 04 05 06 07 08 09 1
p



0 01 02 03 04 05 06 07 08 09 1
p

-What is the more “informative” system?
The first one, 2 events with probability of 0.9 and 0.1
The second one, 2 events with probability of 0.5 and 0.5

We have more “questions” in the second case....



We denote expectation by E. Thus, if X ~ p(x), the expected value of
the random variable g(X) is written

Efe(X)]= ) g(x)px),

xeX

Remark The entropy of X can also be interpreted as the expected value

of the random variable log =, where X is drawn according to probability
mass function p(x). Thus,

H(X) = E,,[Iog p(IX)]



Joint Entropy of two r.v.s X, Y

Definition The joint entropy H(X,Y) of a pair of discrete random
variables (X, Y) with a joint distribution p(x, y) is defined as

HX,Y)==) ) p(x y)logp(x,y)

xeX yey

H(X,Y) = —Ellog p(X, Y)}



Conditional Entropy - Y | X

Definition If (X,Y) ~ p(x,y), the conditional entropy H(Y|X) is

defined as

H(Y|X)

= Z p(x)|H(Y|X = X)

xeX

xeX yey

=Y p(®) ) p(yIx) log p(ylx)

=33 Pyl

p(y|x)

xedX ye)y
—Ellog p(Y|X)]

This guy does not
need presentation...
it is a standard
entropy!



Relationship among entropy, joint entropy and conditional entropy
Theorem (Chain rule)

H(X,Y)= H(X)+ H(Y|X).

Proof

H(X,Y)==) ) p(x,y)logp(x,y)

xeX ye)y

=—Y ") p(x,y)log p(x)p(ylx)

xeX yey

=YY p(x,»logp(x)— Y ) p(x,y)log p(y|x)

xeX yey xeX yey

— Y p@)logp(x) =) > p(x, y)log p(ylx)

xeX xeX ye)y
= H(X) + H(Y|X).

Equivalently, we can write
log p(X,Y) =log p(X) + log p(Y|X)

and take the expectation of both sides of the equation to obtain the
theorem. O



Corollary
H(X,Y|Z)= H(X|Z) + H(Y|X, Z).

Remark Note that H(Y|X) # H(X|Y). However, H(X) — H(X|Y) =
H(Y)— H(Y|X), a property that we exploit later.

En general, aplicando la regla de la cadena, se tiene la relacion
H(X)=H(X,)+ H(Xa|Xy)+ -+ HXN| X1, Xo, -+, Xn_1)-

Cuando (X3, X5, -+, Xy) son variables aleatorias independientes,

N
H(X)= Z H(X;).



Example Let (X, Y) have the following joint distribution:

“loint”
X
Y 1 2 3 R -
1 | l : This is the
s % = = joint pmf...
200 % 0§ B %
Are you able to find marginal and 3 i i n n
conditional pmfs? R " " °
4l L 0 0 0

—> The marginal distribution of X is (2 Z 8, 8) and the marginal distribution
of Y is (1, 1, "‘, 1), and hence H(X) = blts and H(Y) = 2 bits. Also,

4

H(X|Y)=) p(Y =i)H(X|Y =)

_1H1111 1H1111
=7 \77393) 1"\ 7388

| 1 111 1
+ZH(Z,Z,4,4)+ Lh1,0,0,0)
1 7 1 7 1 |
=zXztargtyityxd
11
=?bits

Similarly, H(Y|X) = %2 bits and H(X,Y) = & bits.



Relative entropy — KL divergence

Definition The relative entropy or Kullback—Leibler distance between
two probability mass functions p(x) and g(x) is defined as

D(pllg) = Y p(x)log 22

e q(x)

p(X)
E”['°g 9(X)

In the above definition, we use the convention that Olog-g =0 and the
convention (based on continuity arguments) that 0 log % =0and plog§ =
00. Thus, if there is any symbol x € A such that p(x) > 0 and g(x) =0,
then D(p||g) = oc.

We will soon show that relative entropy is always nonnegative and is
zero if and only if p = ¢g. However,| it i1s not a true distance |between
distributions since it 1s not symmetric and does not satisfy the triangle

inequality. Nonetheless, it 1s often useful to think of relative entropy as a
“distance” between distributions.



Relative entropy — KL divergence

The relative entropy is a measure of the distance between two distribu-
tions. In statistics, it arises as an expected logarithm of the likelihood ratio.
The relative entropy D(p||g) is a measure of the inefficiency of assuming
that the distribution is ¢ when the true distribution is p.

Note that again it is not symmetric, and it is quite useful for the the
causality (where important concept, especially in biomedical
applications).

Theorem 2.6.3 (Information inequality)  Let p(x),q(x),x € X, be
two probability mass functions. Then

D(pllg) =0

with equality if and only if p(x) = q(x) for all x.




Example Let X= {0, 1} and consider two distributions p and g
onX. Let p(O)=1—r, p(1)=r,and let g(0) =1 — s, g(1) = 5. Then

D(pllg) = (1 —r)log +—

r r
+rlog—
s s

and

§ §
D(qllp) = (1 —s) log T, log —

If r =5, then D(pllg) = D(ql|lp) =0.If r = 1'-, 5§ = i, we can calculate

| |
D(pllg) = %log%— + % logZ=1- % log 3 = 0.2075 bit,
3 3

whereas
|

3
D(qllp) = %log% + %log% = %log3 — 1 =0.1887 bit.
3 7

Note that D(p|lg) # D(q||p) in general.




MUTUAL INFORMATION

Definition Consider two random variables X and Y with a joint proba-
bility mass function p(x, y) and marginal probability mass functions p(x)
and p(y). The mutual information 1(X; Y) is the relative entropy between
the joint distribution and the product distribution p(x)p(y):

p(x,y)
I(X;:Y)= p(x,y)log ————
;; px)p(y)
= D(p(x, y)llp(x)p(y))

p(X,Y)
= Epey|log
pex.) {°g P(X)p(Y)

It is symmetric.



MUTUAL INFORMATION

Corollary (Nonnegativity of mutual information)  For any two random

variables, X, Y,
I(X:Y) =0,

with equality if and only if X and Y are independent.

IMPORTANT: WE CAN STUDY DEPENDENCY/INDEPENDENCY BETWEEN
RANDOM VARIABLES (different from the correlation coefficient...).

1. I(X,)Y)=I(Y,X) > 0.
La igualdad se cumple en el caso de que X e Y sean independientes.

2. I(X,)Y) <min(H(X),H(Y)).
La informaciéon mutua nunca puede ser mayor de la que tiene cada una de las
variables



Relationship between ENTROPY and
MUTUAL INFORMATION

p(x,y)
px)p(y)

I(X;Y) =)  p(x.y)log
X.¥

_ Z”("' ) log p(x|y)
e p(x)

=—> p@x,y)logp(x)+ ) p(x,y)log p(xly)
x.y x.y

=-Y p(x)log p(x) - (— Y p(x,y)log p(xl,v))
X X.¥

= H(X) — H(X|Y).

Thus, the mutual information 7 (X; Y) is the reduction in the uncertainty
of X due to the knowledge of Y.




I:> By symmetry, it also follows that

I(X;Y)=H(Y) — H(Y|X).

> Since H(X,Y) = H(X) + H(Y|X),

I(X:Y)=H(X)+ H(Y)— H(X,Y).

Finally, we note that
I(X; X)= H(X) — H(X|X) = H(X).

Thus, the mutual information of a random variable with itself is the
entropy of the random variable. This is the reason that entropy is some-
times referred to as| self-information.

Example For the joint distribution of Example Ex-Joint is easy to
calculate the mutual information I (X:;Y) = H(X) — H(X|Y) = H(Y) —
H(Y|X) = 0.375 bit.



“information can’t hurt”

Theorem (Conditioning reduces entropy Y Information can’t hurt)

H(X|Y) = H(X)

with equality if and only if X and Y are independent.

Proof: 0 < I(X;Y)= H(X)— H(X|Y). O

Intuitively, the theorem says that knowing another random variable Y
can only reduce the uncertainty in X. Note that this is true only on the
average. Specifically, H(X|Y = y) may be greater than or less than or
equal to H(X), but on the average H(X|Y) =} p(Y)H(X|Y =y) <
H (X). For example, in a court case, specific new evidence might increase
uncertainty, but on the average evidence decreases uncertainty.




Example Let (X, Y) have the following joint distribution:

X

El— Ll | o

o
%l —

Then H(X)= H(g,g)=0544 bit, H(X|Y =1)=0 bits, and
H(X|Y =2)=1 bit. We calculate H(X|Y)=3H(X|Y=1)+1
H(X|Y = 2) = 0.25 bit. Thus, the uncertainty in X is increased if ¥ = 2
is observed and decreased if Y = 1 is observed, but uncertainty decreases
on the average.




SUMMARY

e Recall the definitions: Recall that:

p(x,y) = p(y 1 x)p(x)

L N
H(X.Y)=Hyy =-> 3 p(x =iy = plog[ p(x =i,y = j)]| 2221 =PelpG)

j=1i=1

H(X1Y)=H,, = ‘EEP(’C =i,y = Hlog[p(x =ily = )]

L

IXY) =Ly == Y plx =i,y = j)log[

j=1 i=1

pu=0my=ﬂ]
p(x = l7y = ])




SUMMARY - RELATIONSRHIPS

Theorem (Mutual information and entropy)

I(X;Y)=H(X)— H(X|Y)
I(X;Y)=H(Y)— H(Y|X)
I(X;Y)=H(X)+ H(Y)— H(X,Y)
I(X;Y)=I(Y; X)

I(X: X)= H(X).

CI(X,Y) =I(Y,X) > 0.

La igualdad se cumple en el caso de que X e Y sean independientes.

CI(X)Y) <min(H(X),H(Y)).
La informacién mutua nunca puede ser mayor de la que tiene cada una de las
variables



SUMMARY - RELATIONSRHIPS

HXY)

/0

HX) H(Y)

FIGURE Relationship between entropy and mutual information.

The relationship between H(X), H(Y), H(X,Y), H(X|Y), H(Y|X),
and /(X:Y) 1s expressed in a Venn diagram =——————» Notice that
the mutual information 7(X:Y) corresponds to the intersection of the
information in X with the information in Y.



RELATIONSHIPS

HXY

Red: Hx
Yellow: Hy
Red+Yellow=Hxy (joint)




RELATIONSHIPS

We can obtain the inequalities:

H,,<H, +H, Hy =Hy, +1y, Iy, =Hy —Hy,

Hy, =H,+H, -1, Hy =Hyy + 1y Iy, =H, -Hyjy

HXY = HXIY +HY|X +IXY HX < HXY < HX +HY IXY = HX +HY _HXY
HXY = HX +HYIX IXY = IYX

H,<H,,<H,+H,
HXY =HY+HXIY



Independent Variables

HXY
I, =0
HX =HXIY
HY = My x
HXY= HX +HY

The joint entropy is max,
and I(X,Y) is min




Case X=Y (totally dependent)

HXY =HX =HY =IXY

IXY =HX =HY HXY

0
0

HXIY
HYIX

H,



e Recall:

p(x) delta

X=Y

Independent
variables

X=Y

X=Y

Important formulas

O<H, <log, M
O<H, <log, L

(H,=H,<H,, <H,+H,

O<Il,,<H,(=H,)

O<H,, <H,
O<H,,<H,

p(x) uniform

Independent variables

X=Y

Independent variables

Independent variables



Data-processing inequalities

Theorem (Data-processing inequality) If X =Y — Z, then
1(X:Y) > I[(X; Z).

Thus, the dependence of X and Y is decreased (or remains unchanged)
by the observation of a “downstream” random variable Z.

More processing on the data, more loss of information....



Data compression Data transmission
limit limit

min 1(X: X) max /(X: Y)

Information theory as the extreme points of communication theory.

Some Material is from the book of T. M. Cover and J. M. Thomas, “Element of information theory”, Wiley.



