Topic 1- part 1 - "Signals"

Discrete Time Systems (DTS)

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u>

In this slides, WE WILL SEE:

- 1.1 Definition of signals, examples and classification
- 1.2 Basic operations with signals in continuous time (CT), and important signals in CT and main properties
- 1.3 Basic operations with signals in discrete time (DT), and important signals in DT and main properties

1.1 Definition of signals, examples and classification

1.1.1 Signals: definitions and classification

Main concept: signals

- What is a signal? numbers/data varying with time and/or space....
- Examples: time series, images etc.
- Mathematically:

$$egin{aligned} x(t), & x[n] & t \in \mathbb{R} \ y(t), & y[n] & n \in \mathbb{Z} \ z(t), & z[n] & n = ... -3, -2, -1, 0, 1, 2, 3... \end{aligned}$$

• It is a function - one dimensional, x(t) - or bidimensional x(t1,t2) (e.g., images)

Main concept: signals

• Generally, we have real signals

$$x(t), x[n] \in \mathbb{R}$$

• or complex signals

$$x(t), x[n] \in \mathbb{C}$$

Examples:

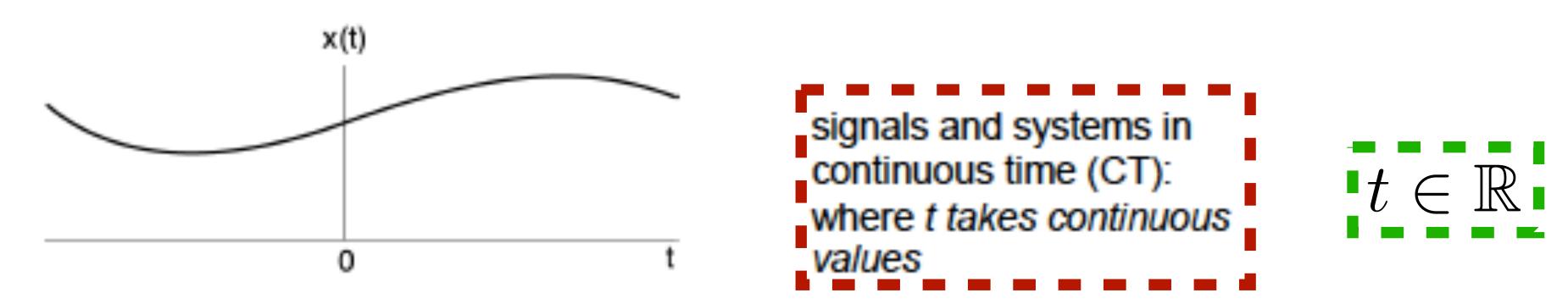
$$x(t) = \sin(t)$$
$$x(t) = t$$

$$x(t) = e^{-jt}$$

$$x(t) = j\sin(t)$$

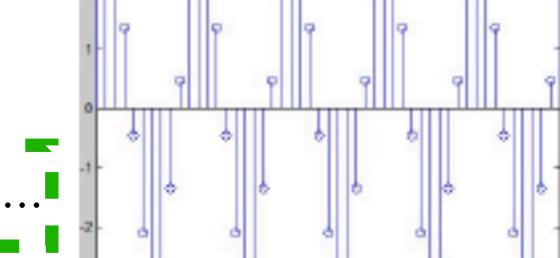
Recall of signals and systems in continuous time

- ¿What is a signal?
 - Is a ``mathematical model" (a function) which represents a variable of interests, that changes with the time.
 - Examples of signals: radio, volts, temperature, ...

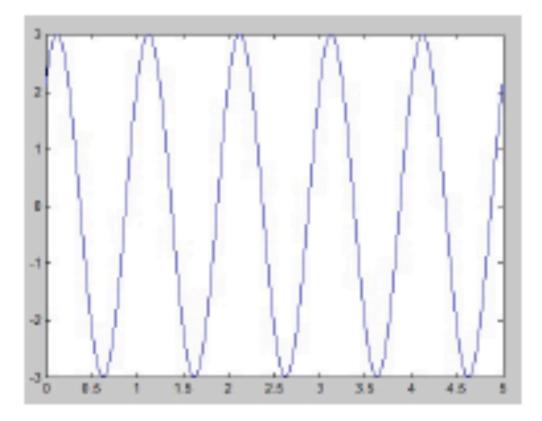


One-dimensional (temperature in a place) vs. Multidimensional (for instance, an image)

- Continuous signals vs. discrete signals
 - Continuous: defined for any real values.
 - Example: voice.
 - Discrete: defined for only for certain time values.
 - Example: final prize of stocks (in a stock market), every day.



Discrete Signal



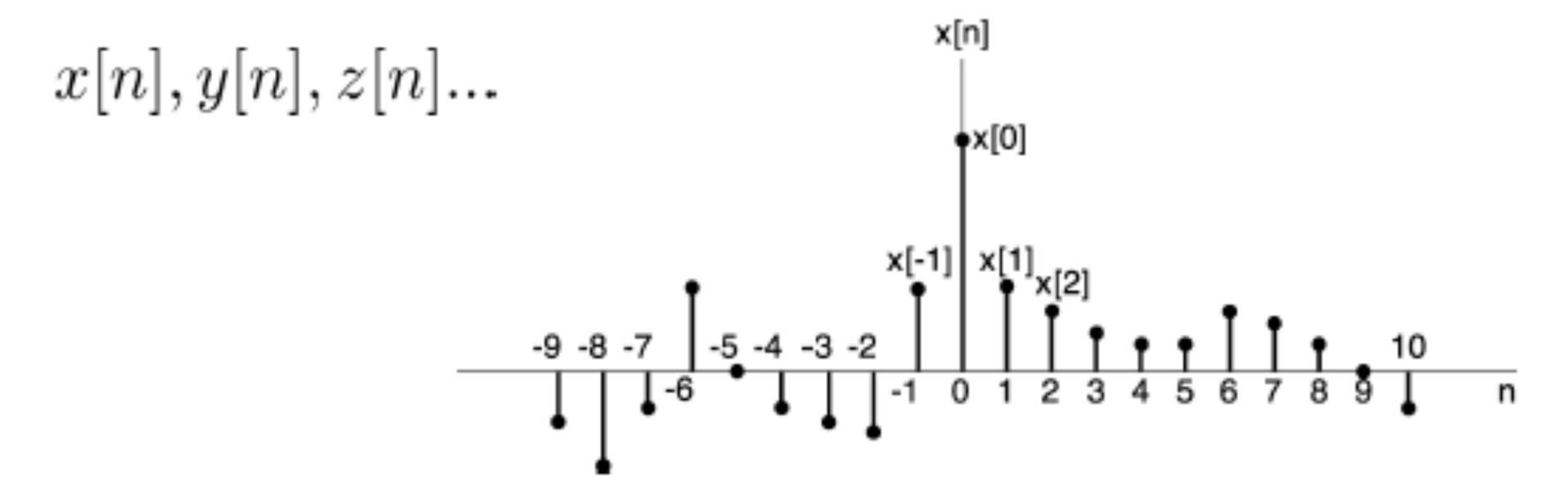
Continuous Signal

REMARK: here we just look the x-axis...

 $n = \dots -3, -2, -1, 0, 1, 2, 3\dots$

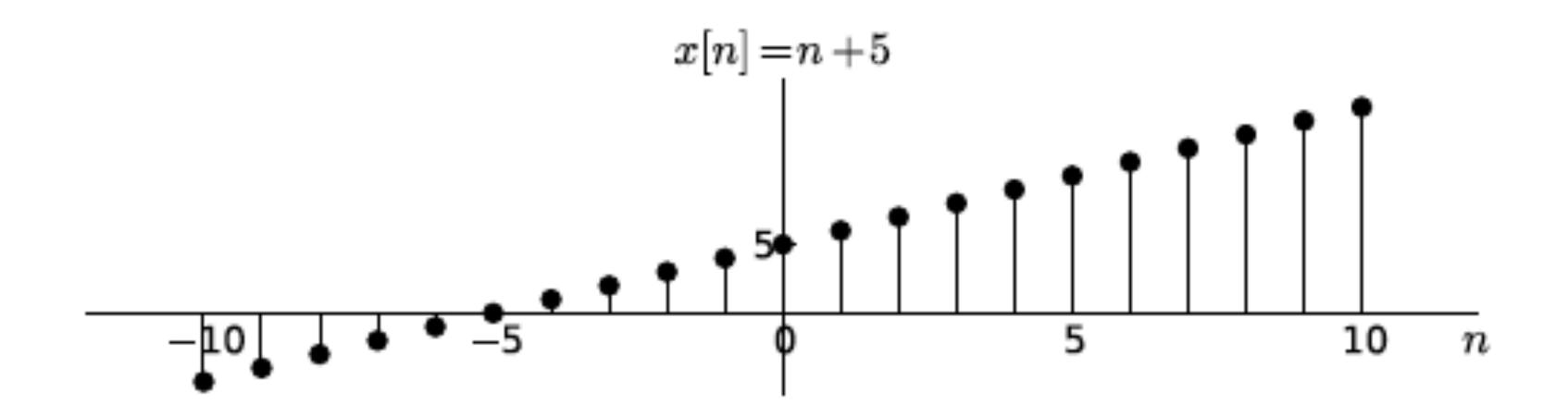
DISCRETE Signals

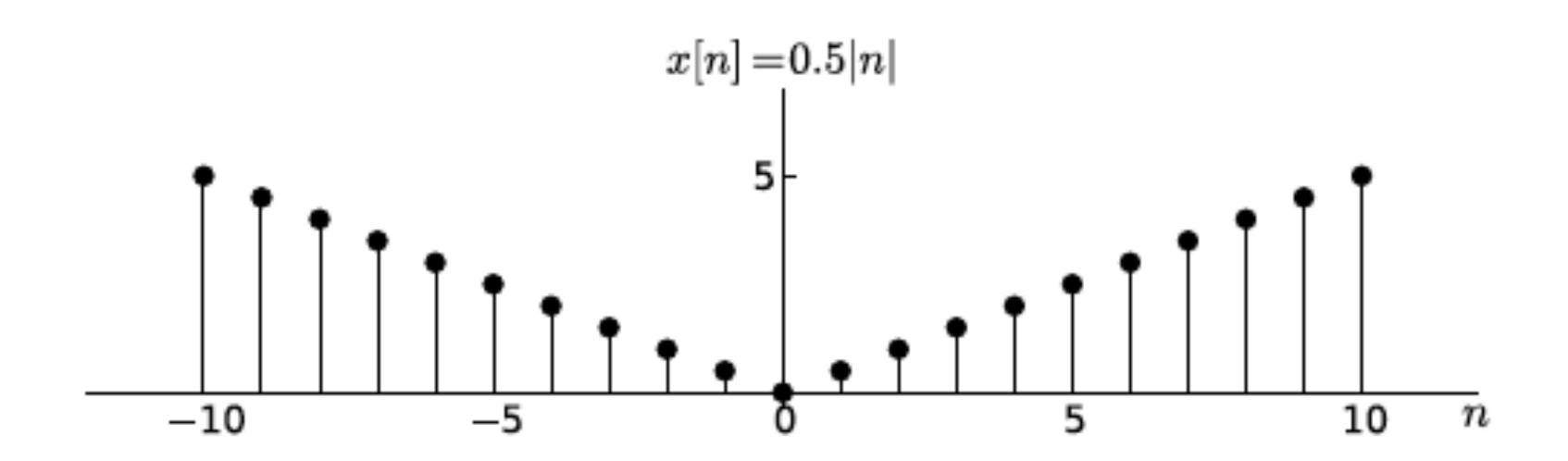
A discrete signal is a sequence of real numbers and is denoted as:



- In a Discrete Signal:
 - The independent variable (n) takes integer values, i.e., discrete
 - The dependent variable (x, y, z...) takes real values, i.e., continouos

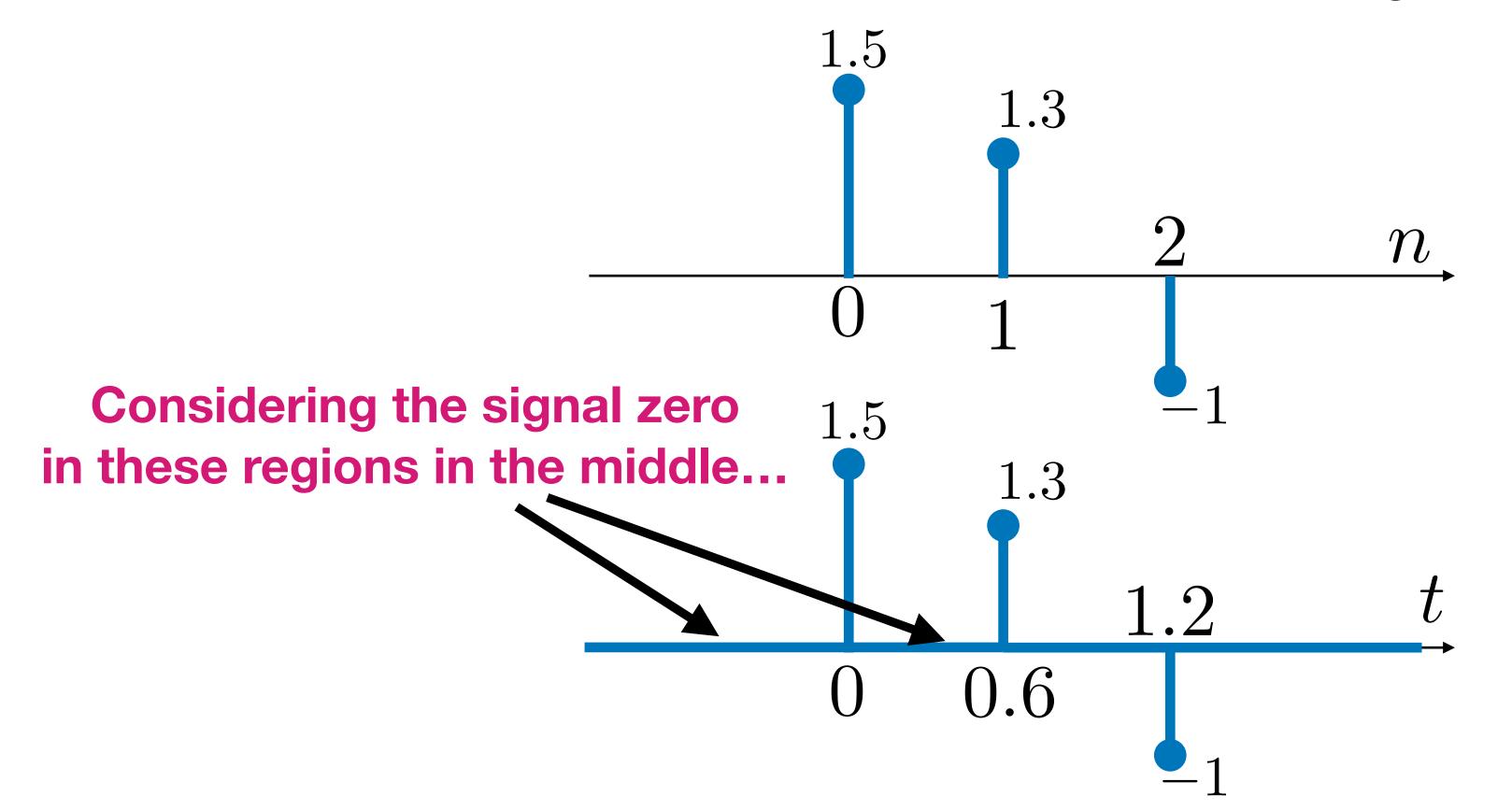
DISCRETE Signals: examples



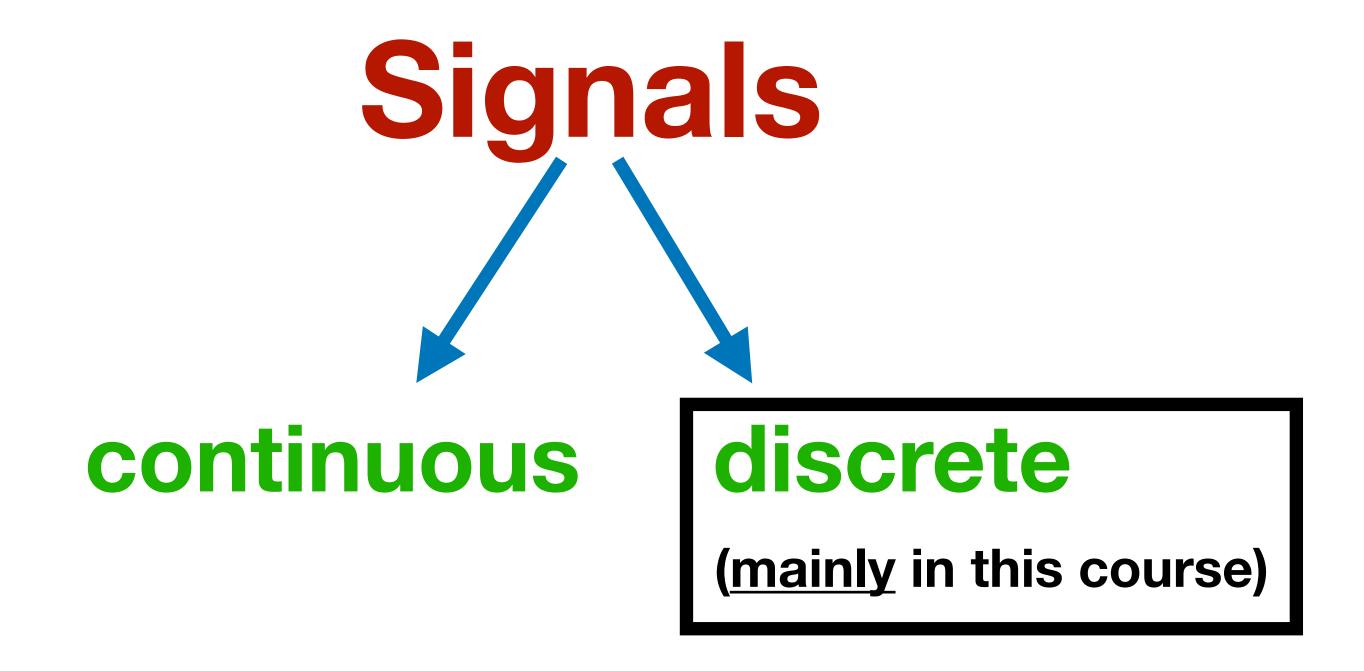


Special case:1.5 1.2 0 0.6

Is a continuous or a discrete signals?

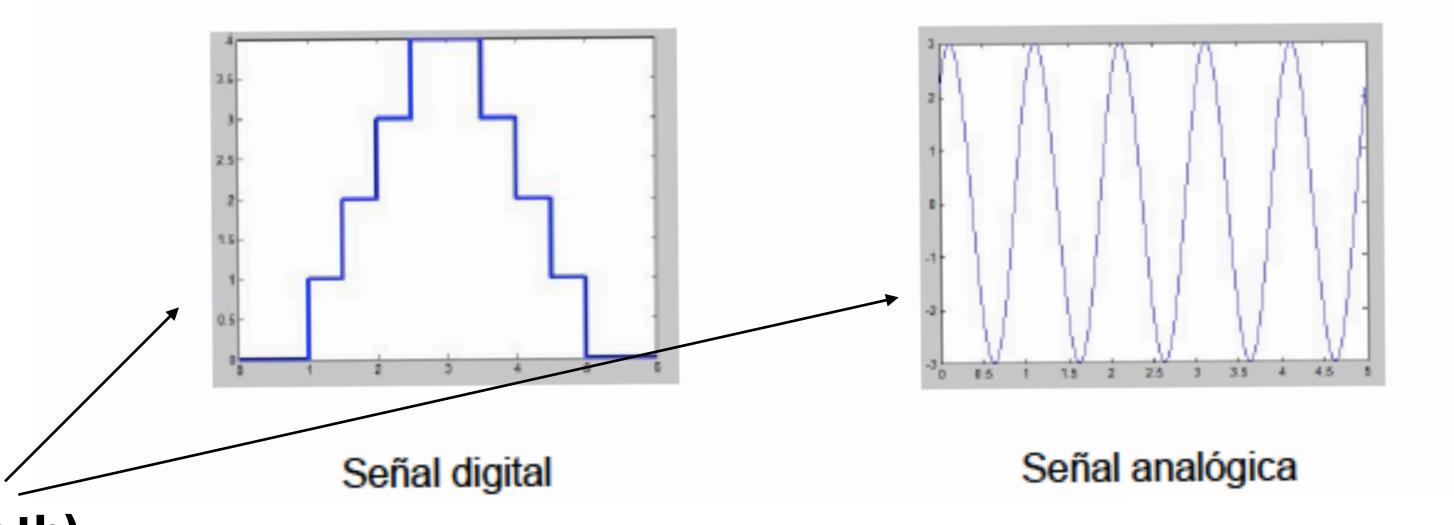


Each step represents a jump of 0.6 in a continuos line...



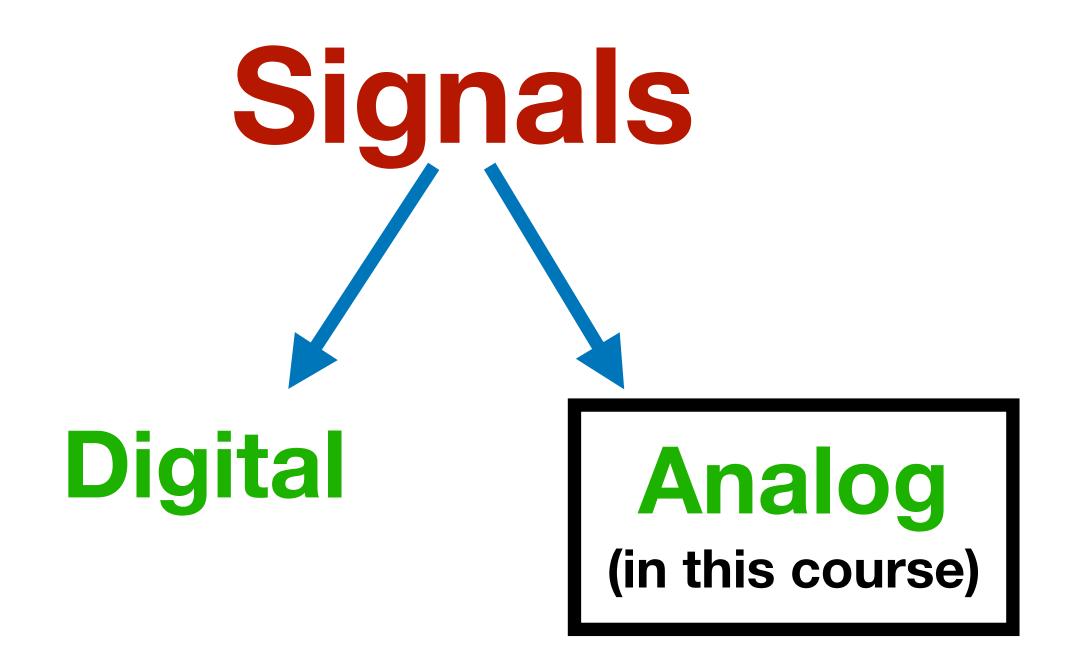
We look the x-axis !!!

- Digital Signals vs. Analog Signals
 - Digital Signals: take only certain values (a finite number of values, in general) within an interval of time.
 - Analog Signals: can take a (infinite) number of continuous values in a (bounded or unbounded) interval.



(Both) continuous signals

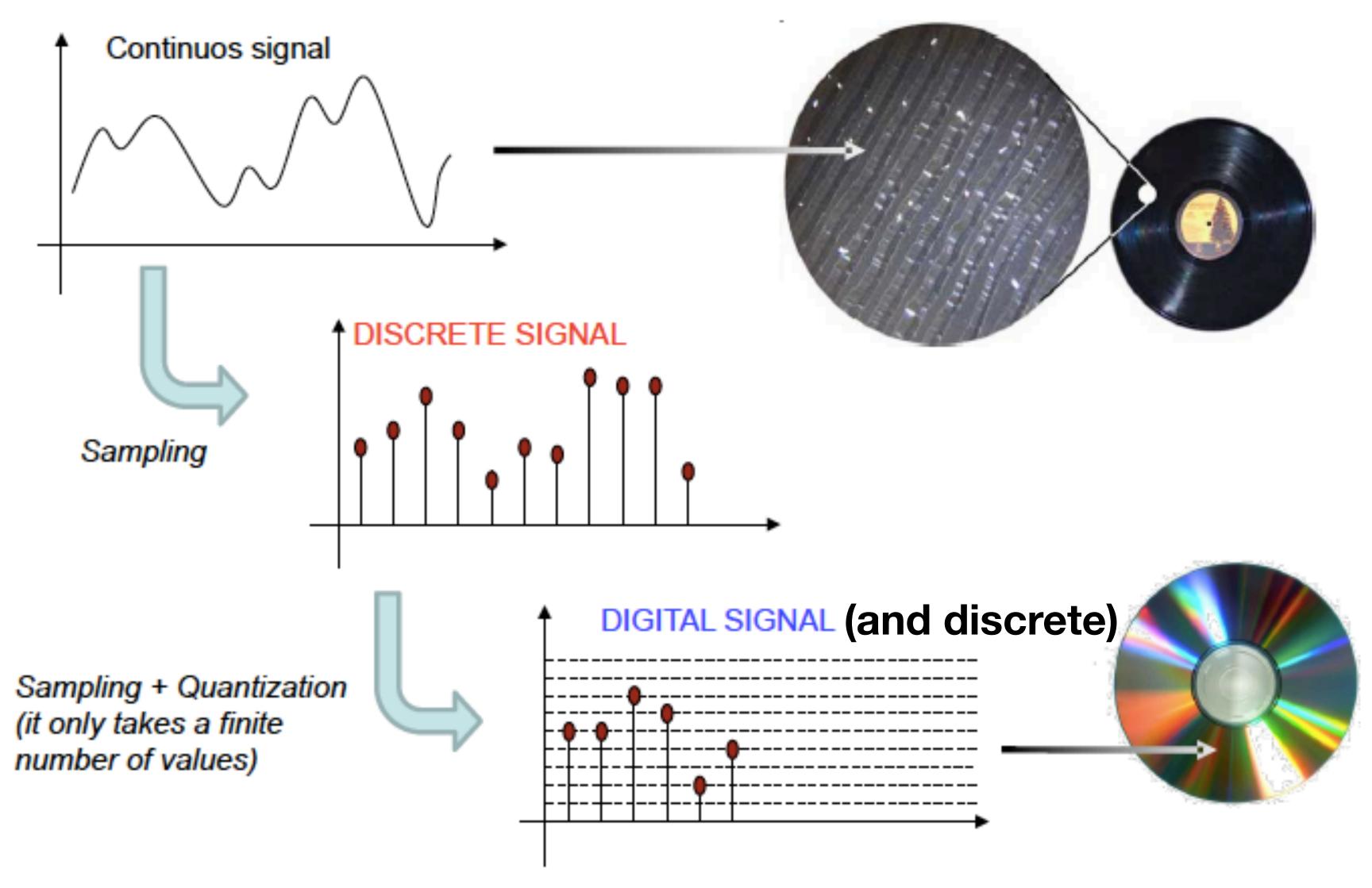
We look the y-axis !!!



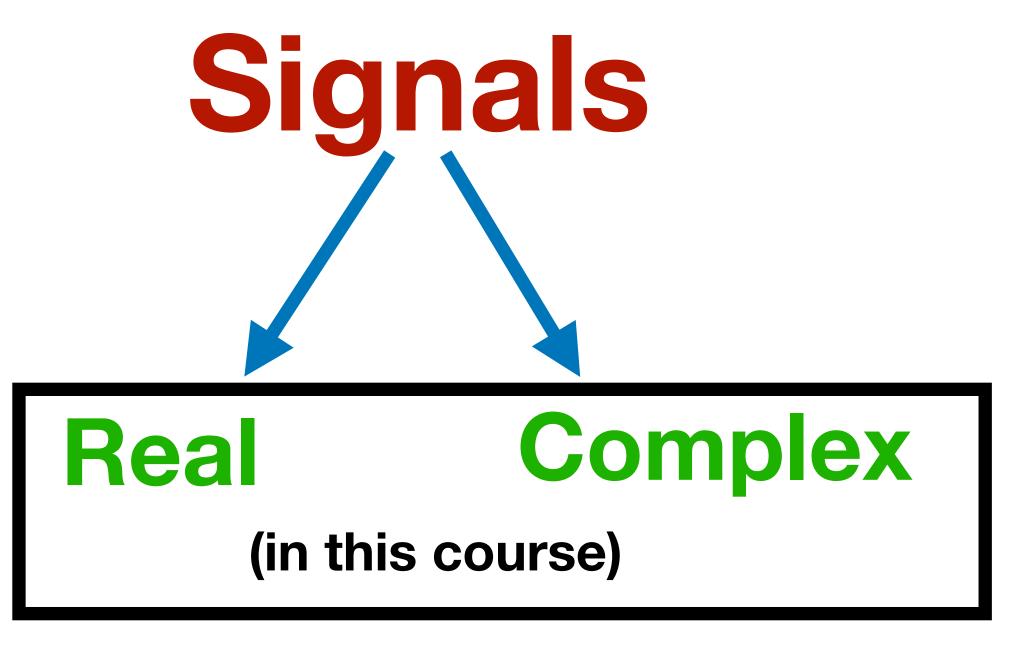
We look the y-axis !!!

Can you plot a discrete and digital signal?

Analog/continuos versus Digital



...and we have already saw:



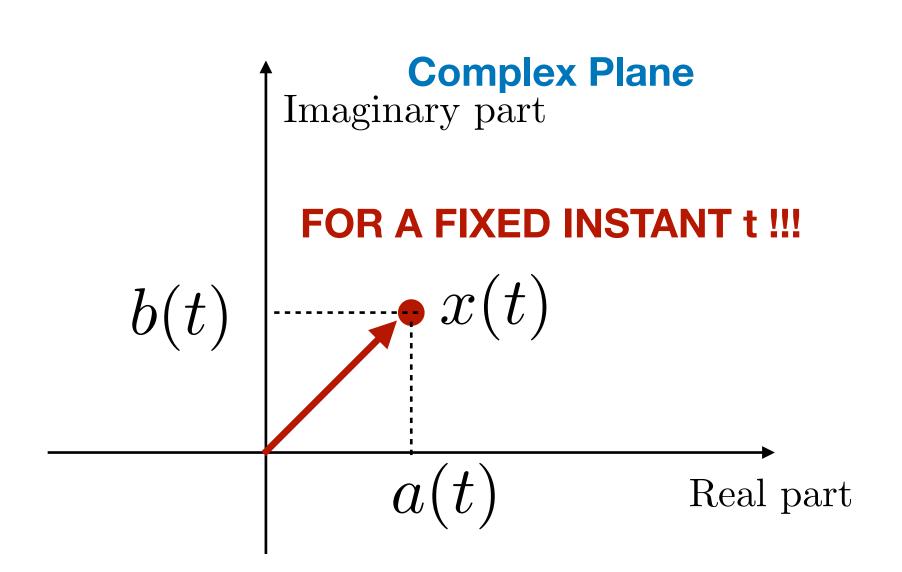
We look the y-axis !!!

Complex signals

$$x(t) = a(t) + jb(t)$$

$$\operatorname{Re}\{x(t)\} = a(t)$$

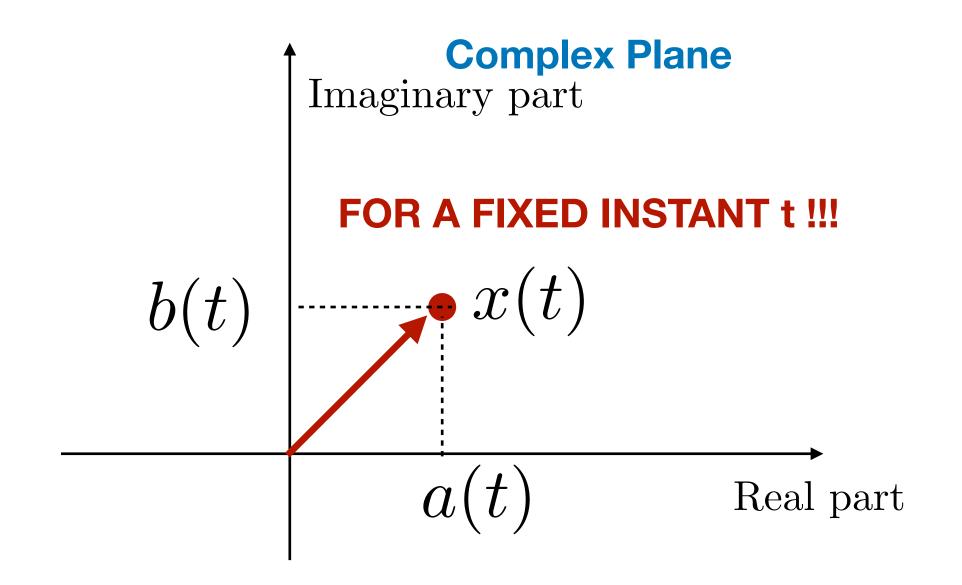
$$\operatorname{Im}\{x(t)\} = b(t)$$

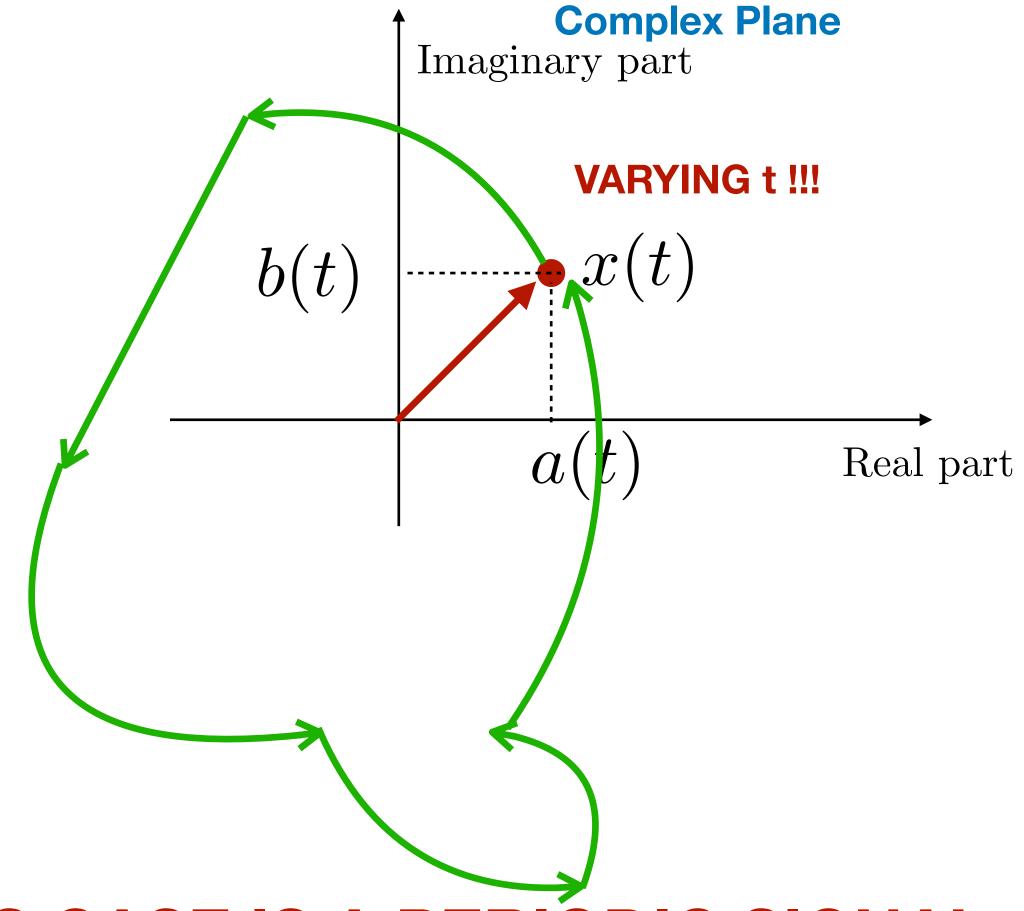


Module
$$\{x(t)\} = |x(t)|^2 = a(t)^2 + b(t)^2$$

$$phase\{x(t)\} = \arctan \frac{b(t)}{a(t)}$$

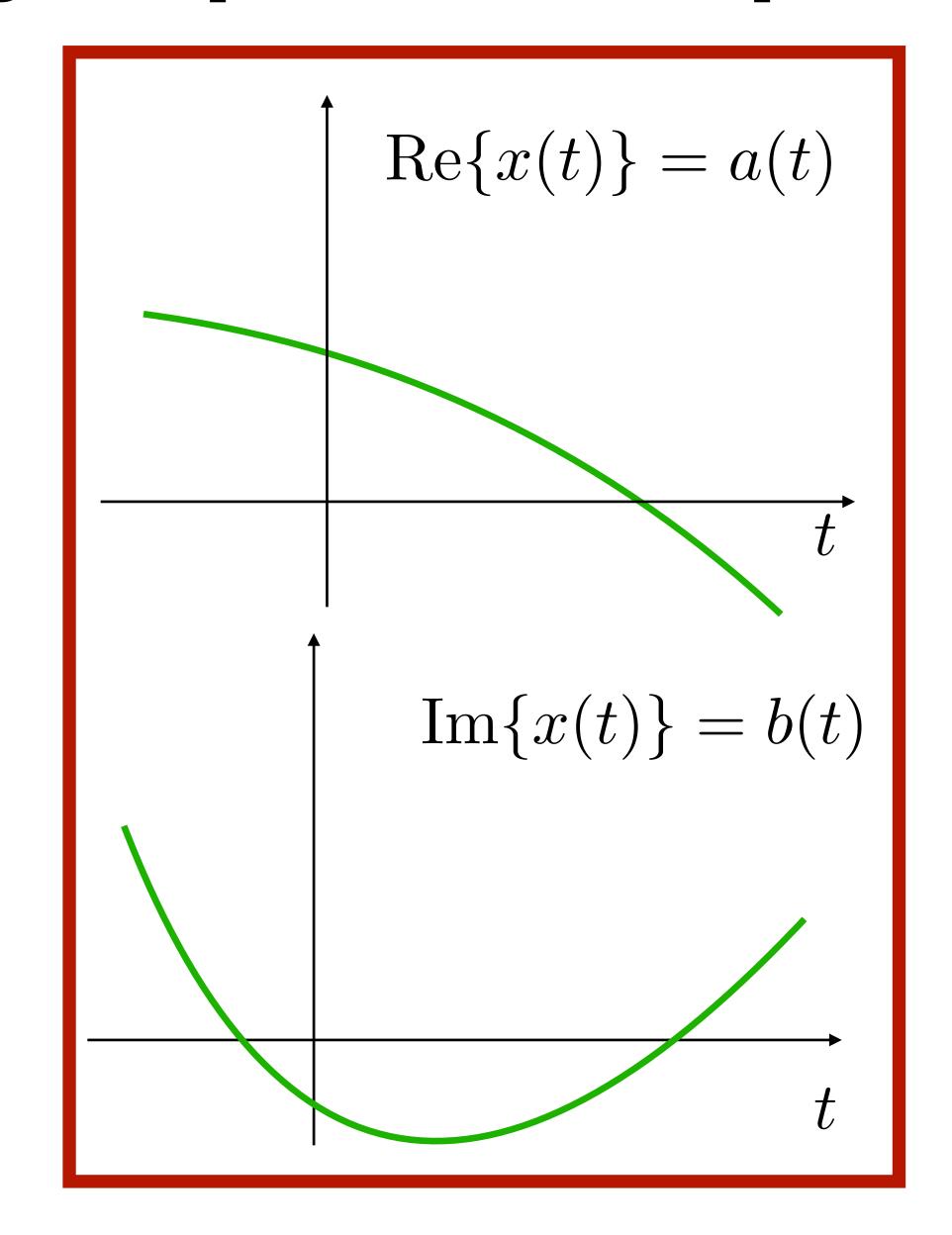
Way to plot a complex signal

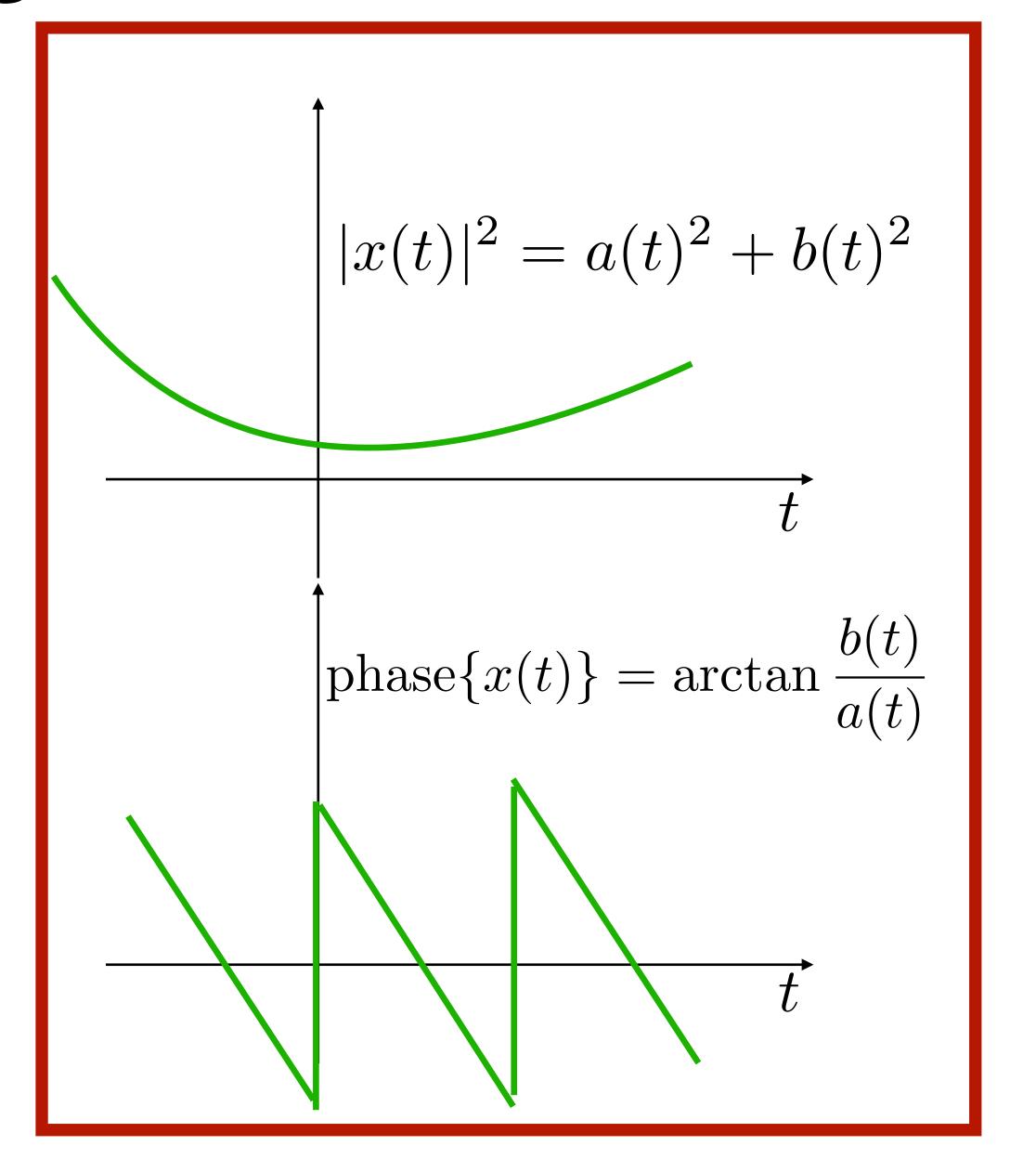




IN THIS CASE IS A PERIODIC SIGNAL: why?

Way to plot a complex signal





Complex signals: conjugate, real and im. parts

Complex conjugate of a signal:

$$x^*(t) = \Re\{x(t)\} - j\Im\{x(t)\} = a(t) - jb(t)$$

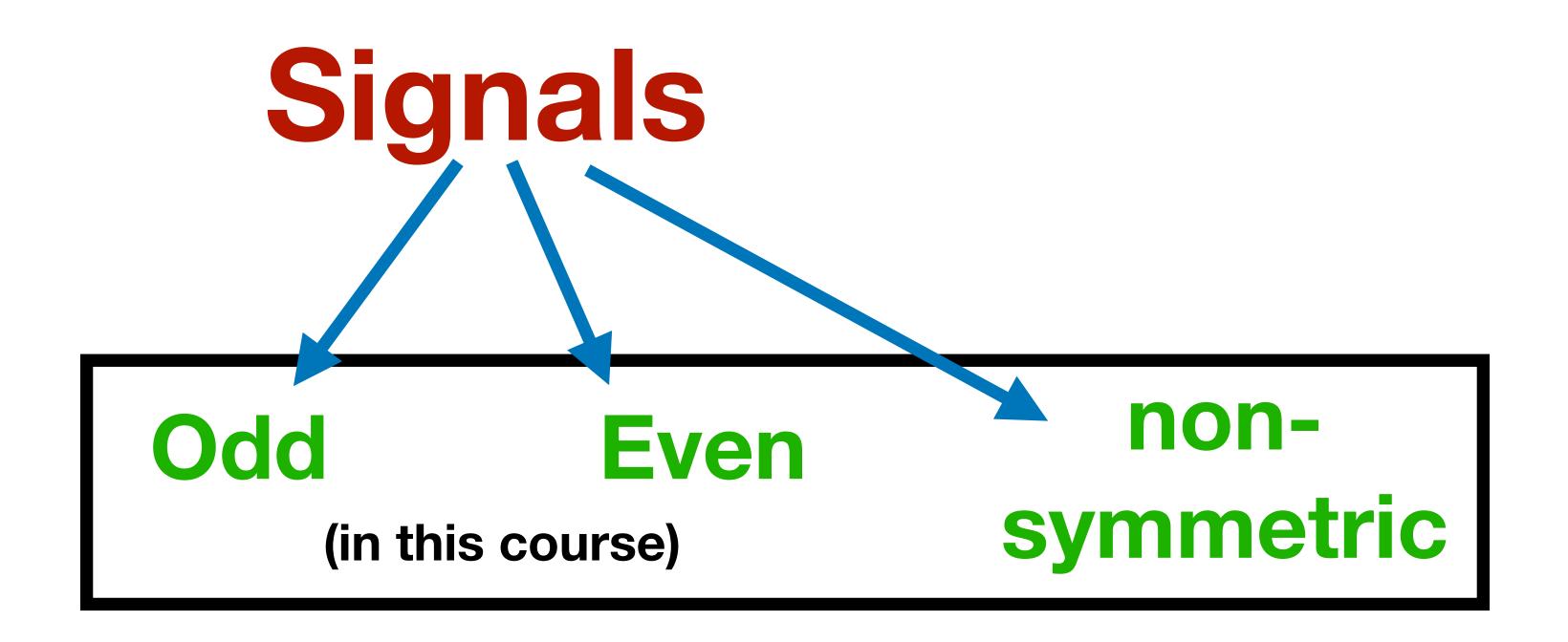
Real and imaginary parts can be obtained as:

$$\Re\{x(t)\} = \frac{1}{2} [x(t) + x^*(t)]; \quad \Im\{x(t)\} = \frac{1}{2j} [x(t) - x^*(t)]$$

The magnitude and argument can be obtained as:

MODULE
$$|x(t)|^2 = x(t) \cdot x^*(t) = (\Re\{x(t)\})^2 + (\Im\{x(t)\})^2$$

$$\angle \{x(t)\} = \arctan \operatorname{tg} \frac{\Im\{x(t)\}}{\Re\{x(t)\}}$$



Examples (in continuos time)

- Real and Complex signals
 - Complex signal

$$x(t) = x_r(t) + jx_i(t)$$

Example of a complex signal: $y(t) = e^{j0.3t} = cos(0.3t) + jsin(0.3t)$

Example of a real signal: x(t) = cos(0.25t)

Odd and even signals: both real signal such that

$$x_e(t) = x_e(-t)$$

$$x_o(t) = -x_o(-t)$$

Generally, we can write

$$x(t) = x_e(t) + x_o(t)$$

$$x_e(t) = \frac{1}{2} [x(t) + x(-t)]$$

$$x_o(t) = \frac{1}{2} [x(t) - x(-t)]$$

Signals

Hermitian Anti-hermitian

(in this course)

non-symmetry in complex plane

Hermitian/anti-hermitian signals (cont. time)

- Hermitian and anti-hermitian signals:
 - Hermitian signals (if real, then is an even signal):

$$x(t) = x^*(-t) \ \forall t$$

anti-hermitian signals (if real, then is an odd signal):

$$x(t) = -x^*(-t)\forall t$$

Hermitian/anti-hermitian signals (cont. time)

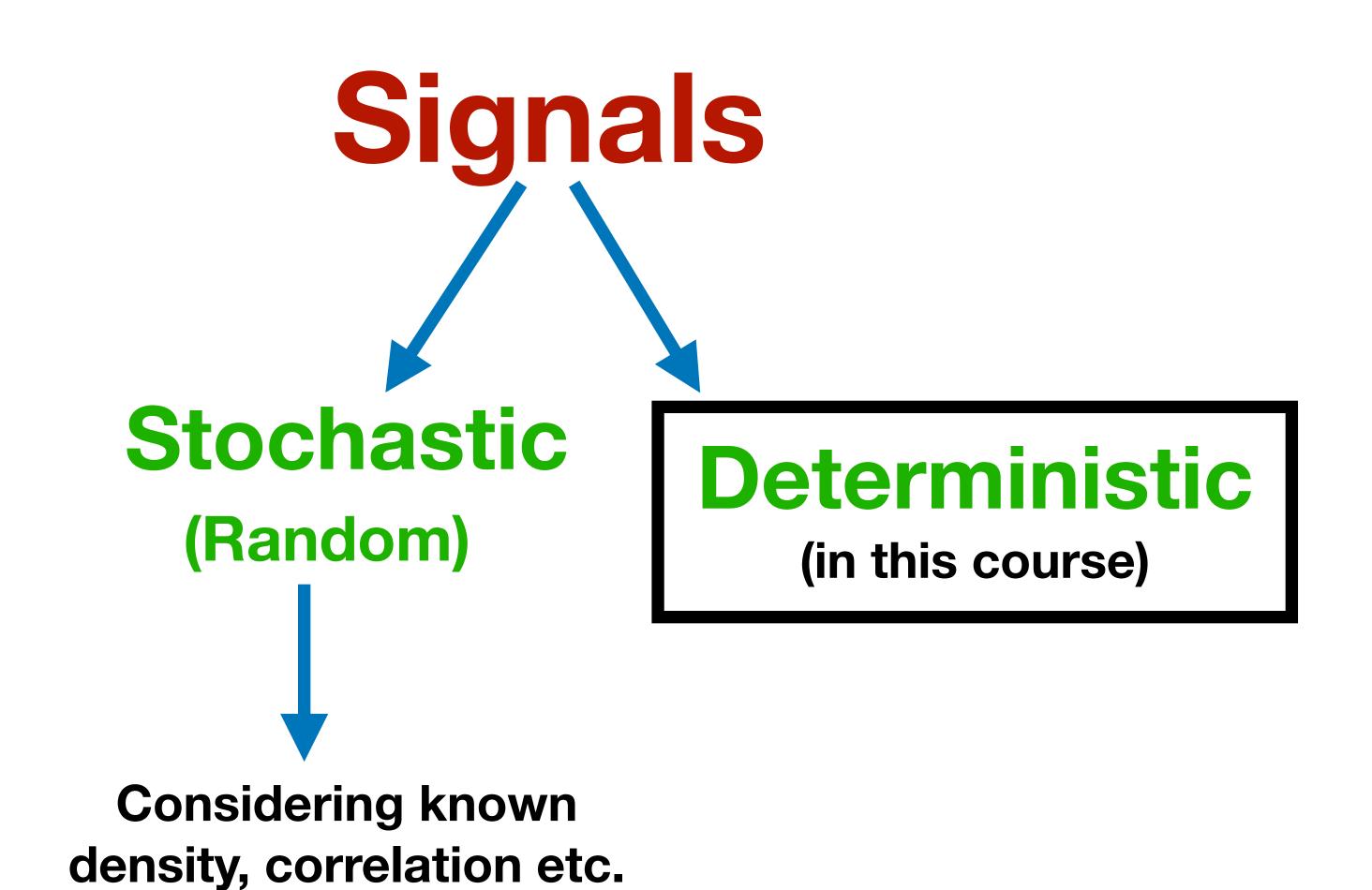
Every complex signal has two components: a hermitian part and an antihermitian part, that
is,

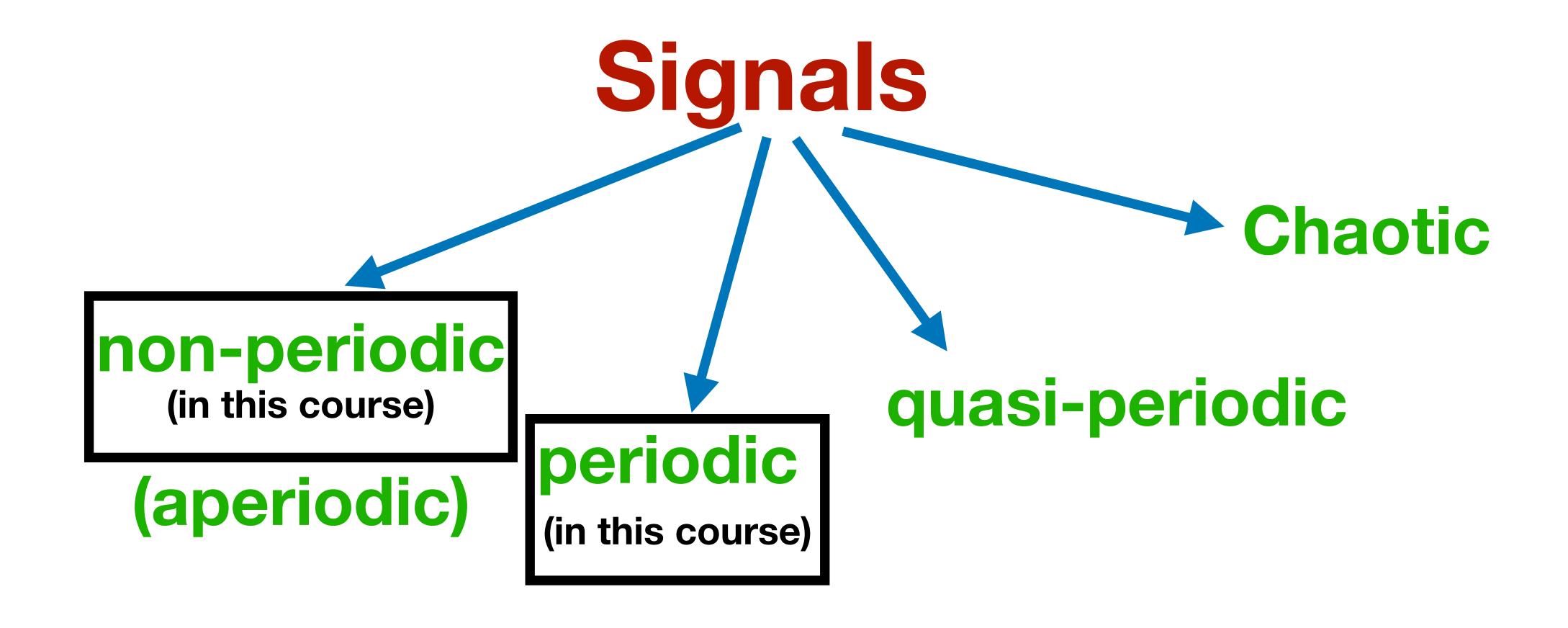
$$x(t) = x_h(t) + x_a(t)$$

Hermitian and antihermitian components can be computed as:

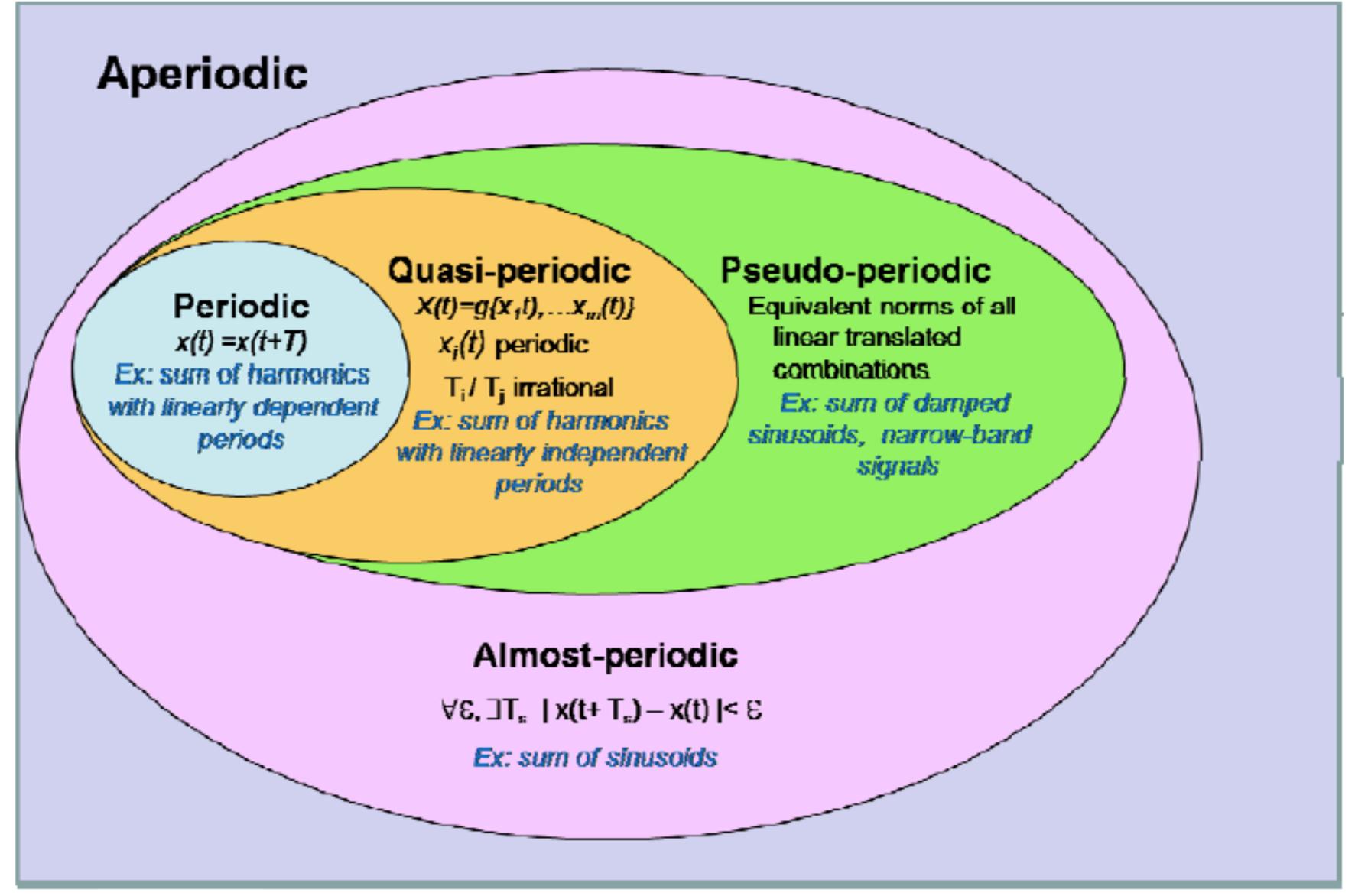
$$x_h(t) = \frac{1}{2}[x(t) + x^*(-t)]; \quad x_a(t) = \frac{1}{2}[x(t) - x^*(-t)]$$

- Deterministic Signals vs. Stochastic Signals
 - Stochastic Signals: contain randomness
 - the definitions, formulas and the treatment change





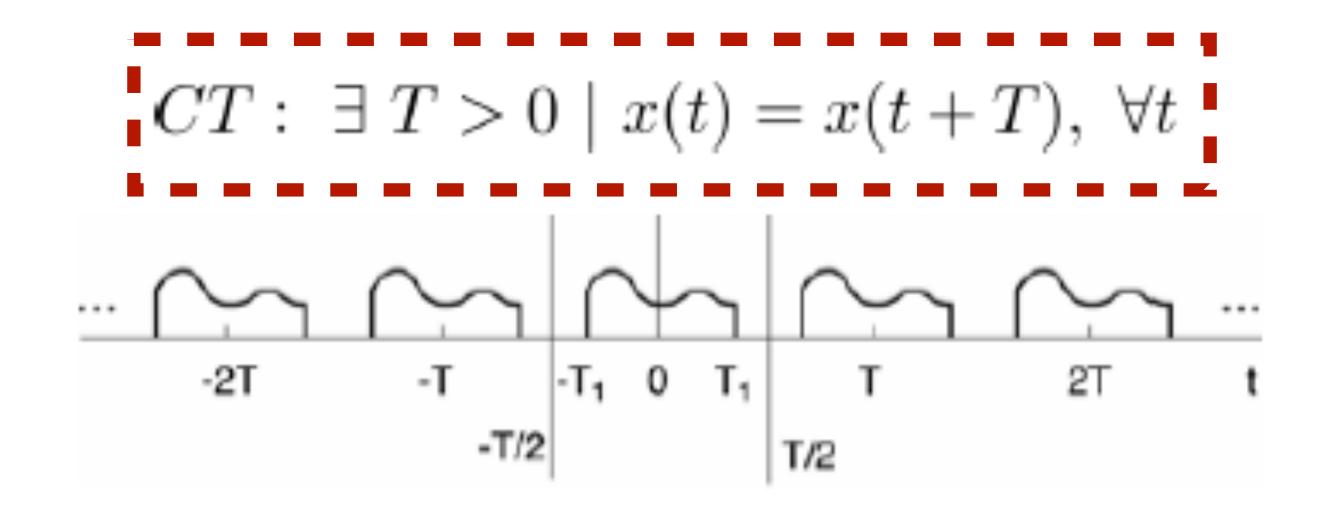
Summary - periodicity



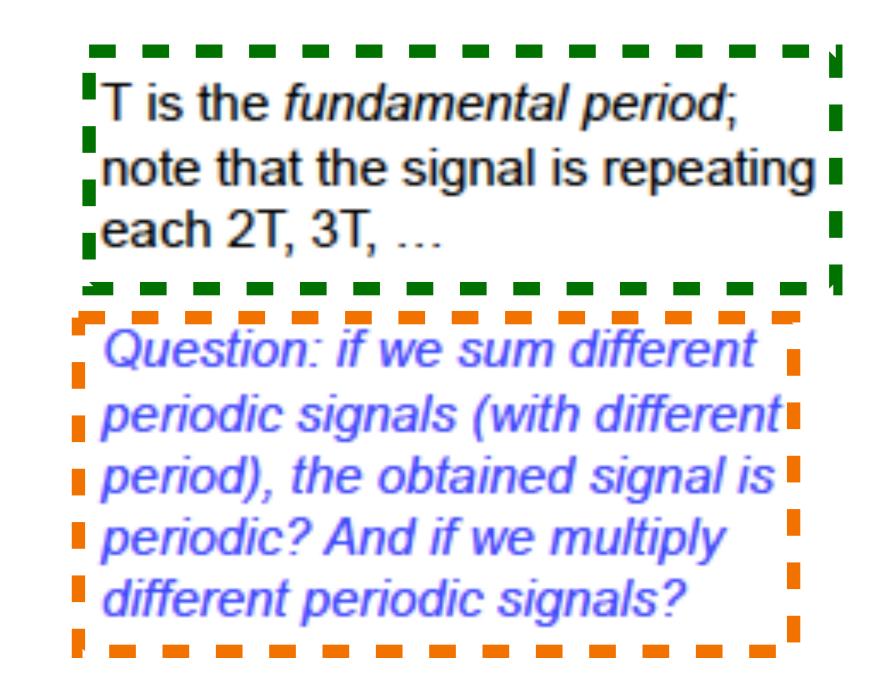
Periodic, quasi-periodic, almost and pseudo-periodic signals.

Periodic signals (continuous time)

Periodic signals:



T is a real positive number



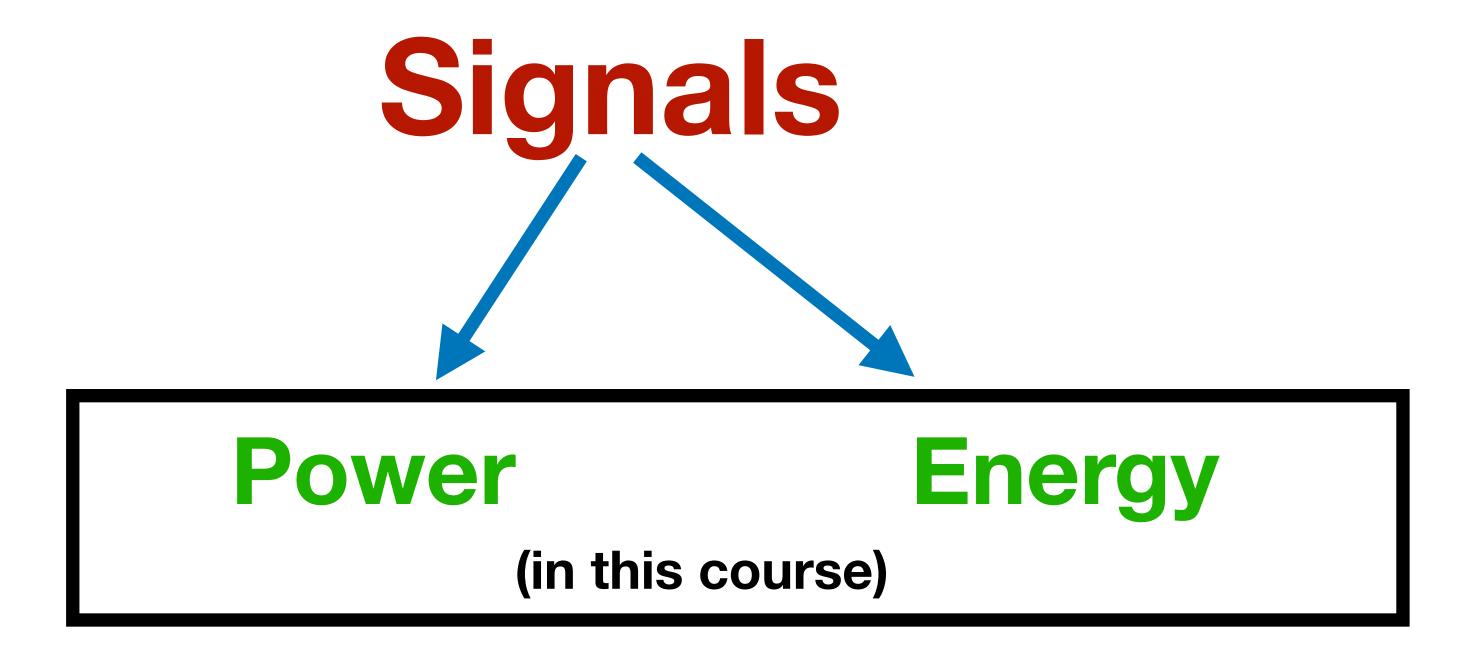
We will come back to this point... in another class

We will come back to periodicity in aonther class, since the discrete case is quite more complicated.

Periodic signals (continuous time)

Fundamental period

- If x(t) is periodic with period T, it is also periodic with periods $2T, 3T, \ldots$
- We call fundamental period, T_0 , to the smallest value of T for which the equation x(t) = x(t + T) holds.



Recall:

- There are power signals and energy signals:
 - Finite Energy → then the power is zero → energy signal
 - Finite Power → then the energy is infinite → power signal
 - Some signals are neither energy nor power signals.
 - For a periodic signal: if the energy in one period is finite, then it is a power signal

1.1.2 (Motivational) Examples of signals

"Motivational" examples

Medical Image: CAT

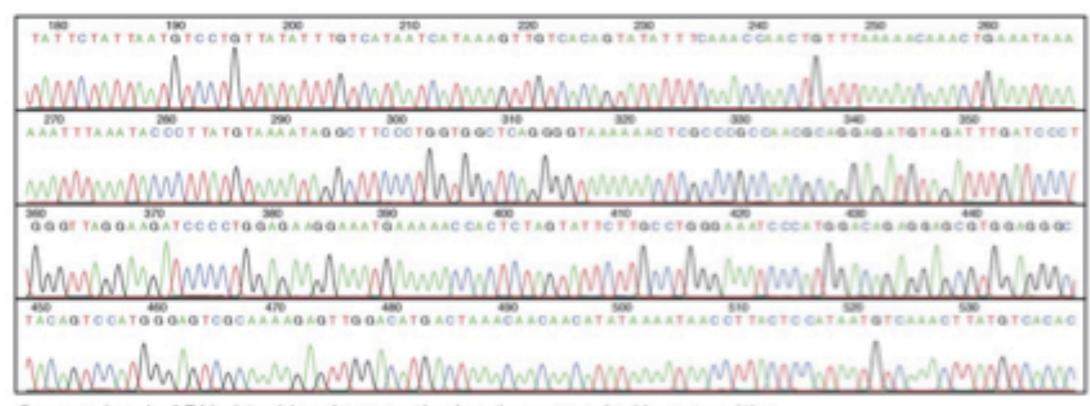


ADN: Microarray

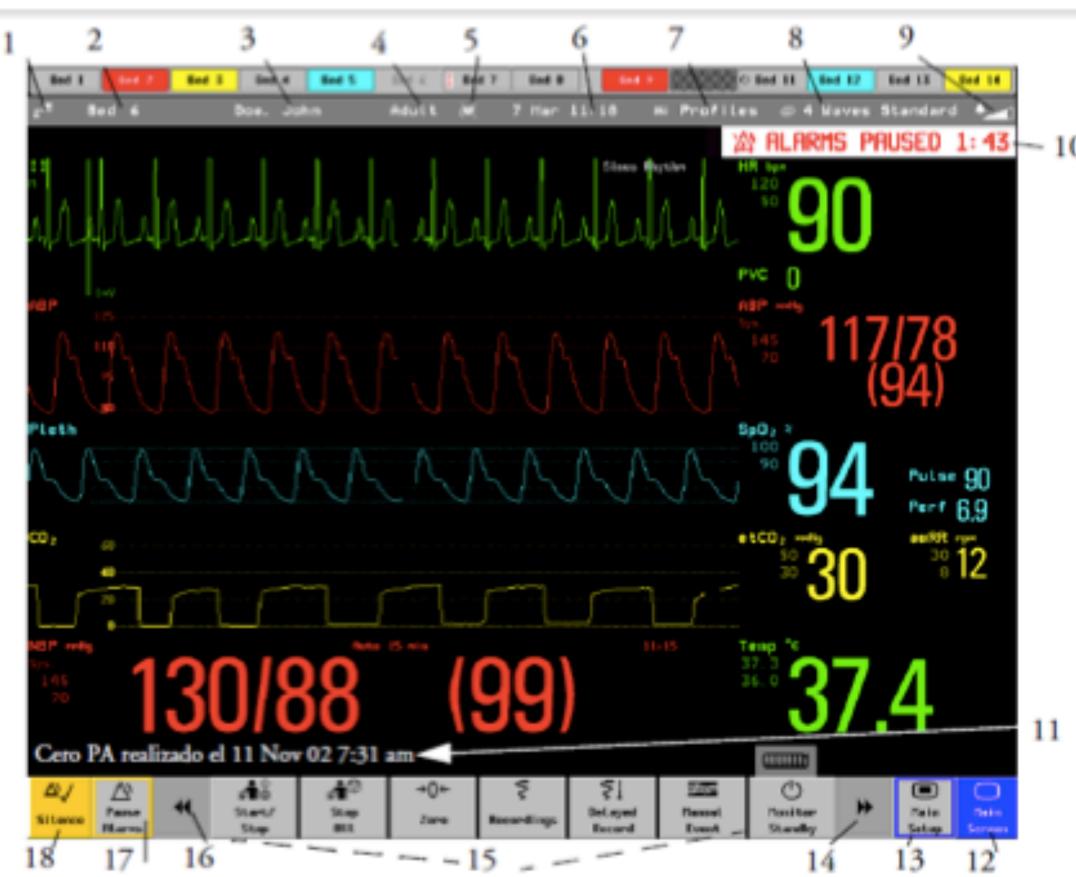


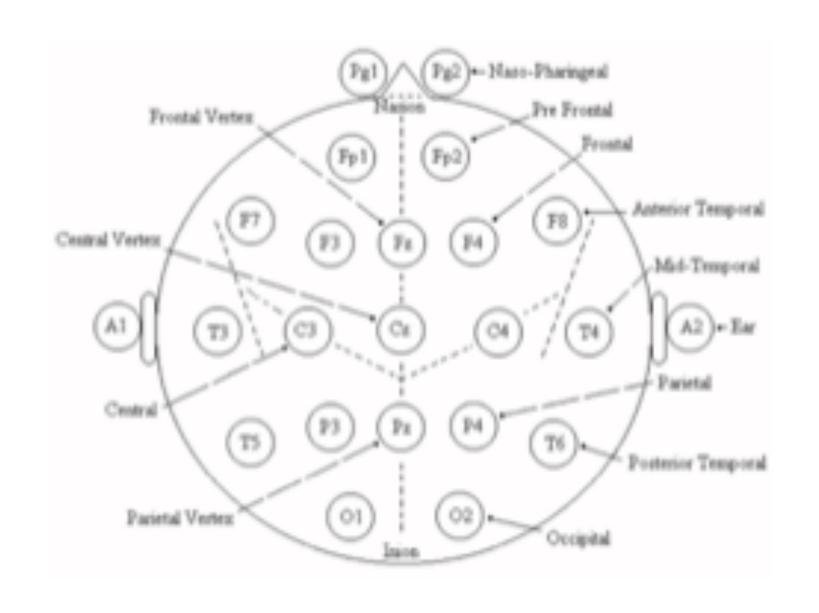
"Motivational" examples

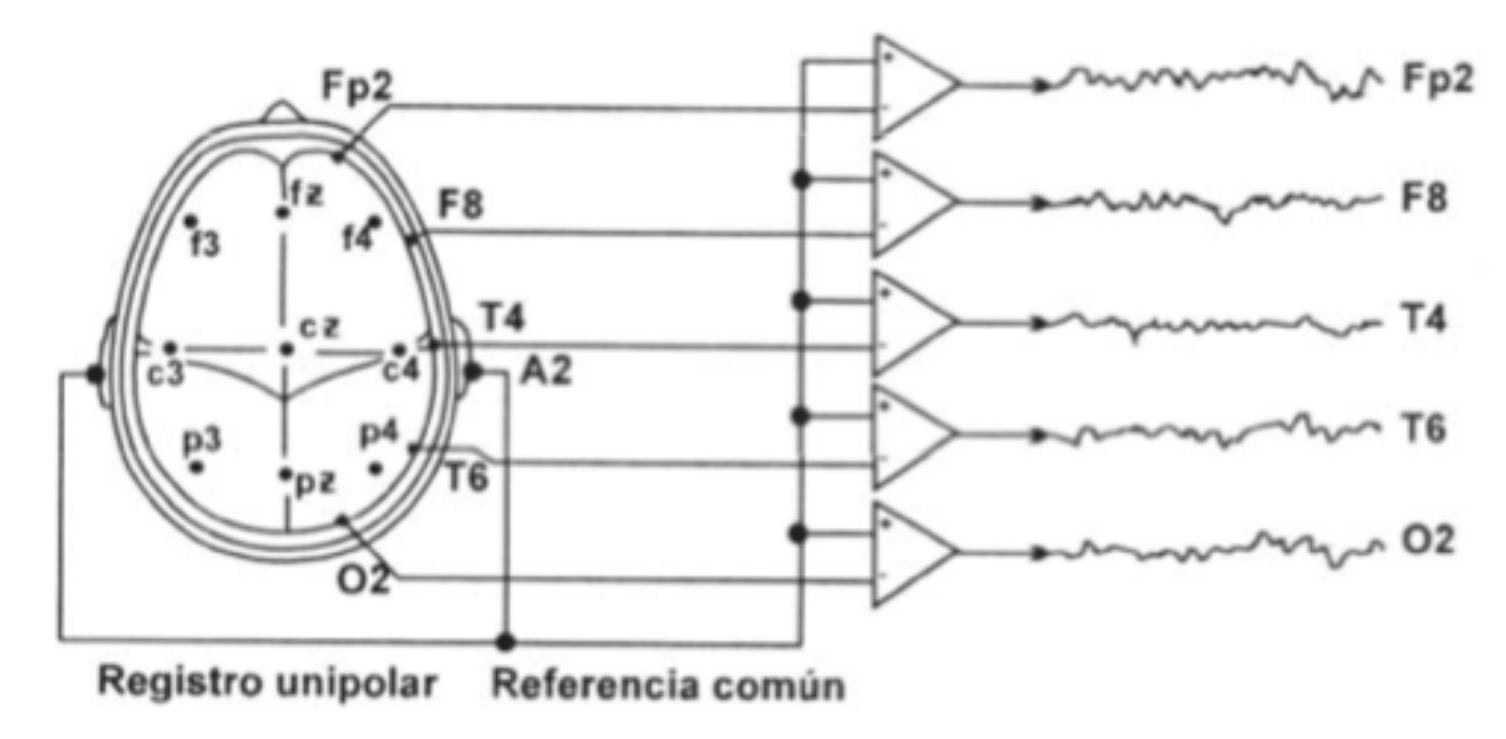
DNA sequence



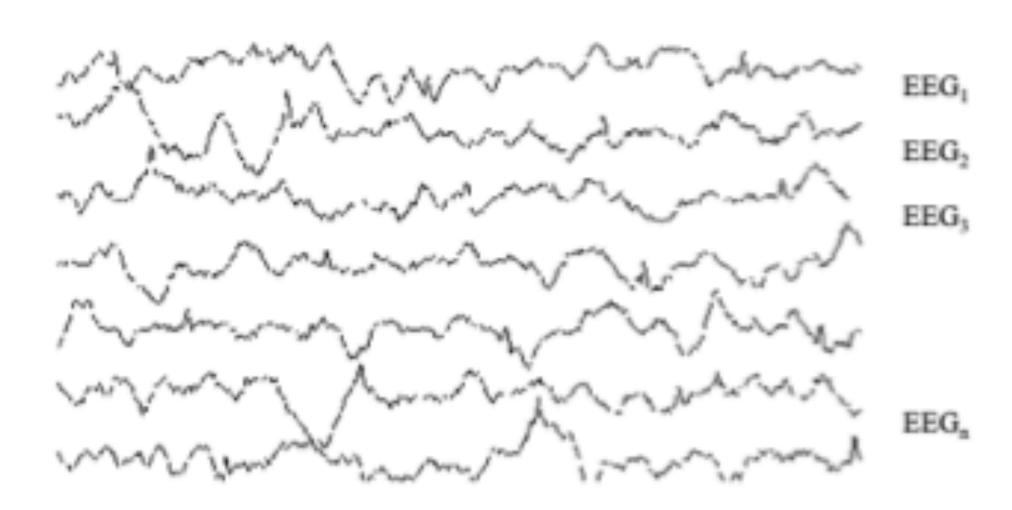
Secuencias de ADN obtenidas de una máquina de secuenciación automática

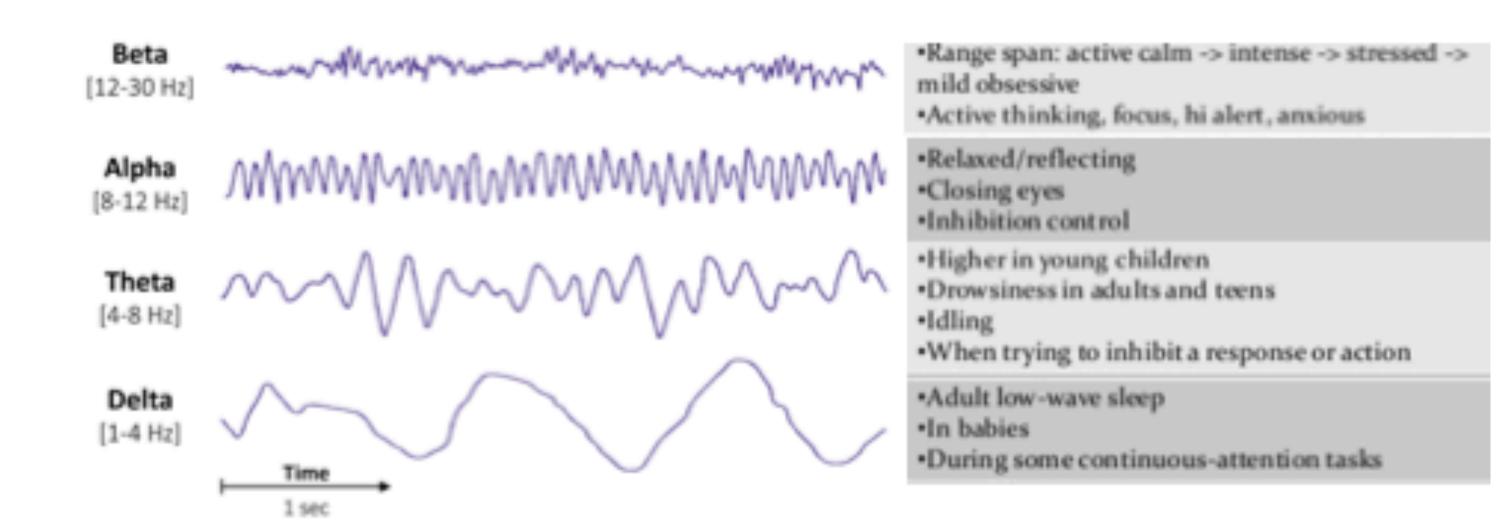




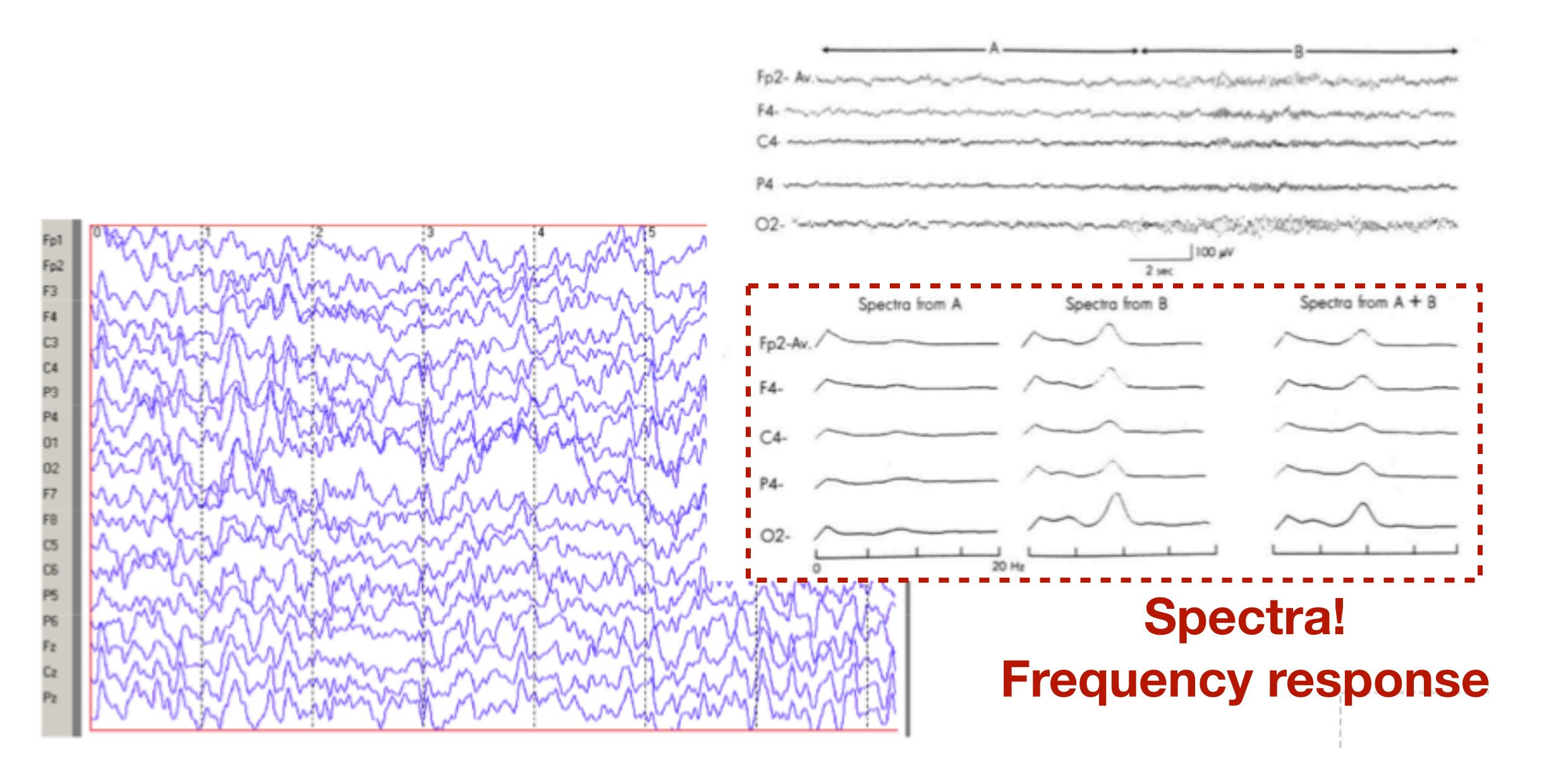


EEG: children 8-12 years, healthy in REM



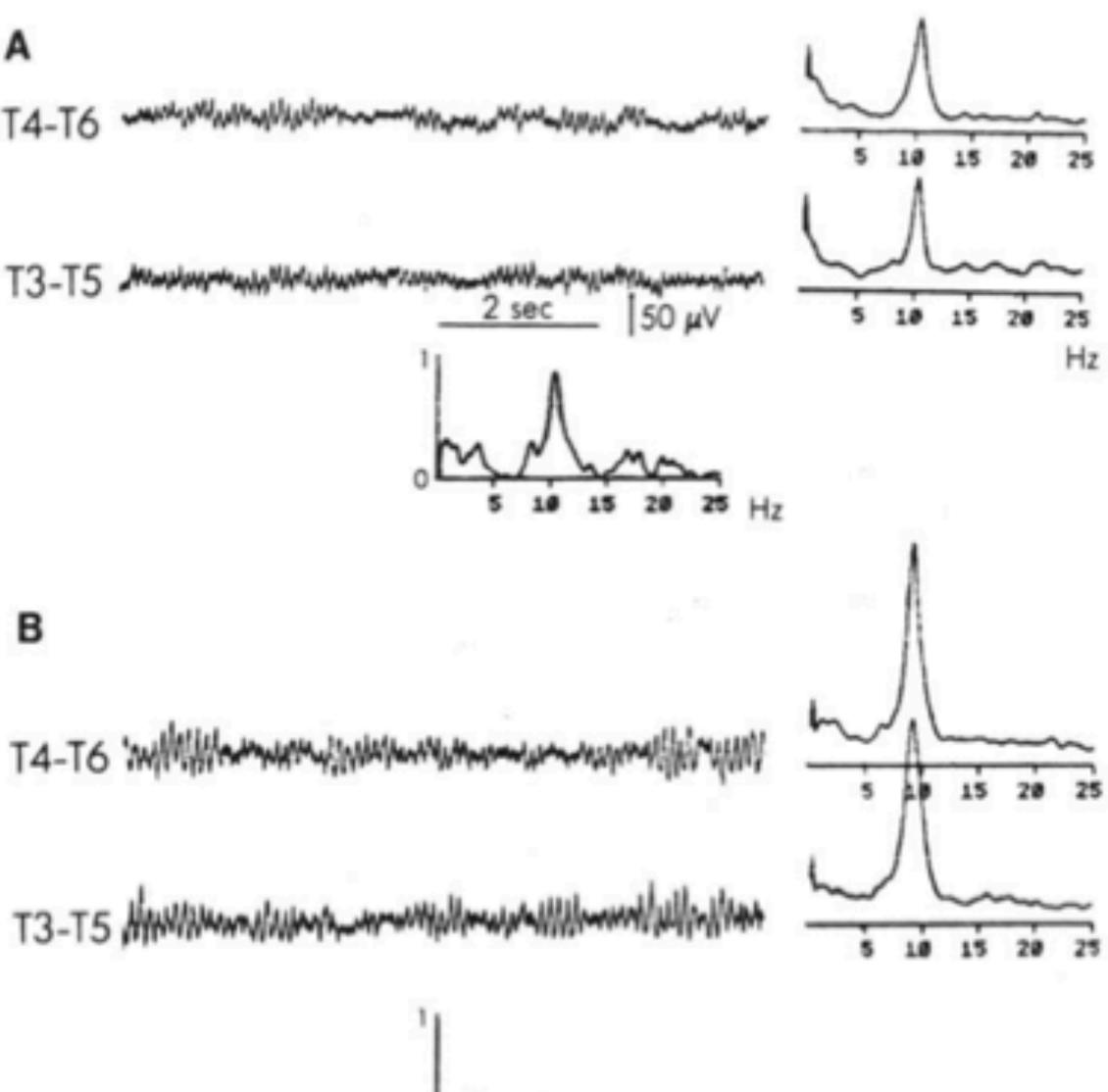


Amplitude between 20-100 uV Frequency between 0-30 Hz.



$$Cxy = \frac{|Pxy(f)|}{(Pxx(f)Pyy(f))}$$

Measures the synchronization between different brain cortex regions



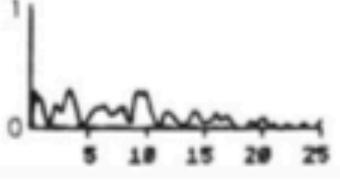
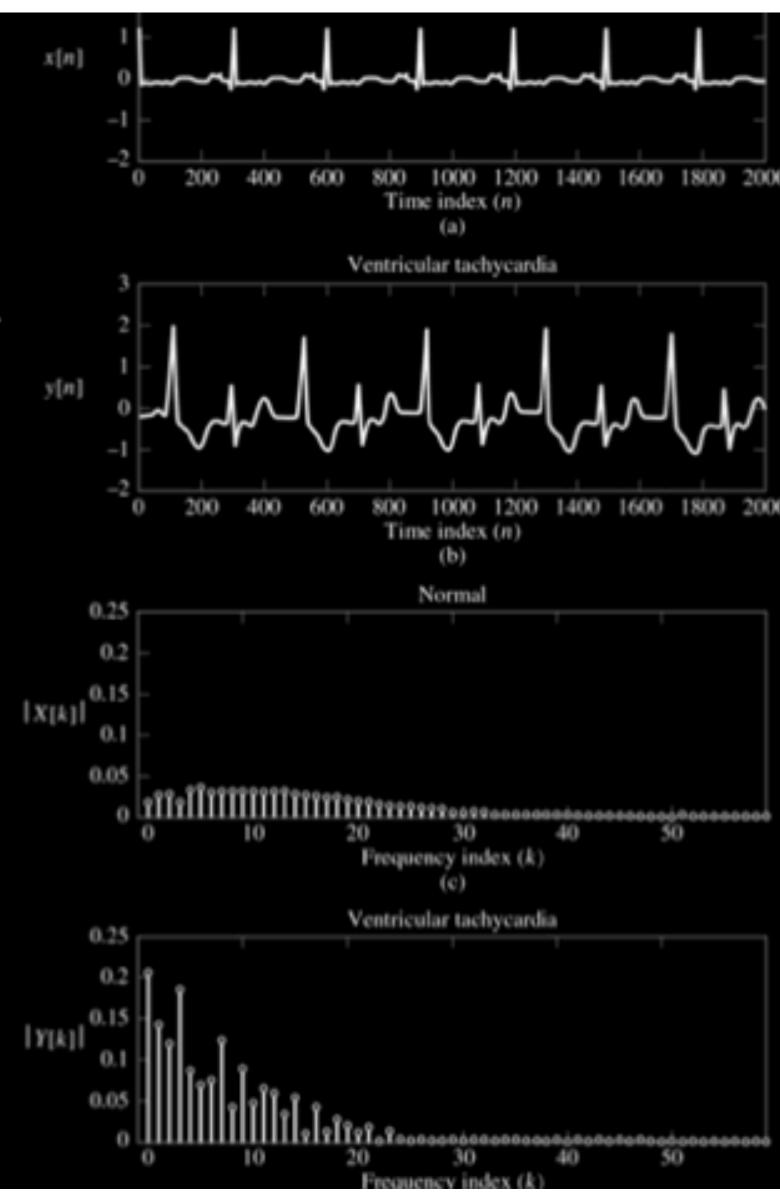


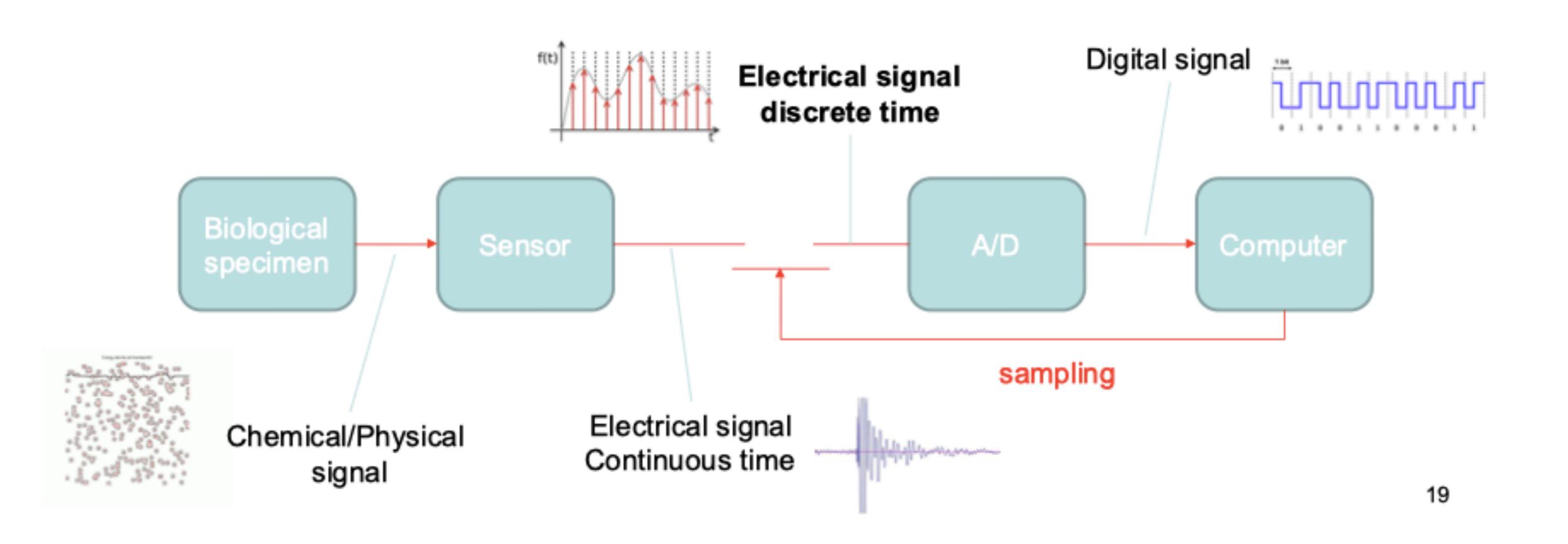
Figure 3.15 (p. 214)

Electrocardiograms for two different heartbeats and the first 60 coefficients of their magnitude spectra.

- (a) Normal heartbeat.
- (b) Ventricular tachycardia.
- (c) Magnitude spectrum for the normal heartbeat.
- (d) Magnitude spectrum for ventricular tachycardia.



"Motivational" examples: in this course...



1.2 Basic operations with signals in cont. time, and important signals in cont. time and main properties

1.2.1 Basic operations with signals in CT

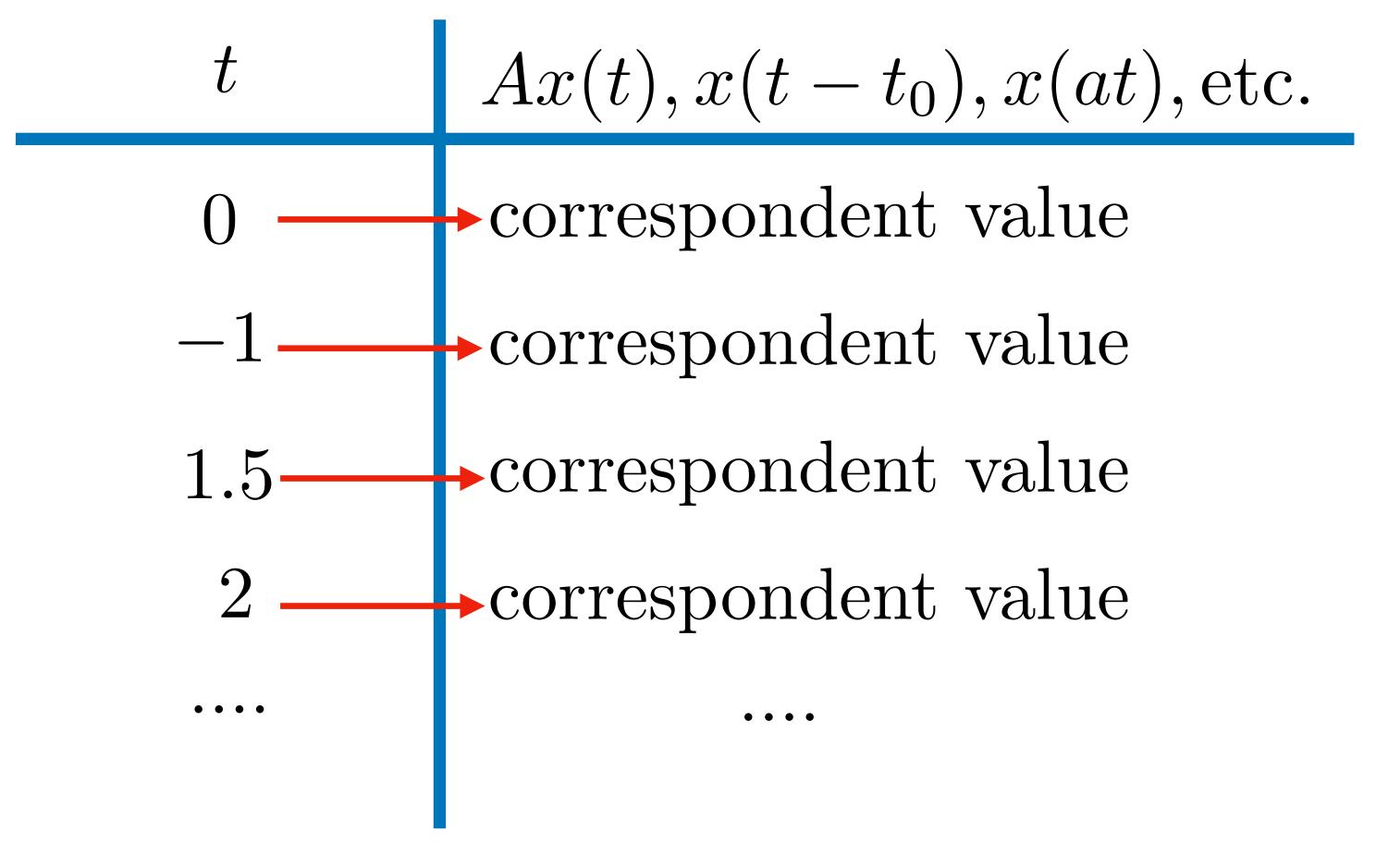
Operations with signals

- What can we do?
 - Any mathematical operation.
- Examples:
 - Level/amplitude change: $\Longrightarrow Ax(t)$
 - Translation: $\Longrightarrow x(t-t_0)$
 - lacktriangledown Time inversion: $\Longrightarrow x(-t)$
 - Change of scale: $\Longrightarrow x(at)$
 - Derivation $\Longrightarrow \frac{dx(t)}{dt}$
 - integration $\Longrightarrow \int_0^t x(\tau)d$

Recall on the blackboard and in your mind...

Operations with signals

Suggested strategies: build a table !!



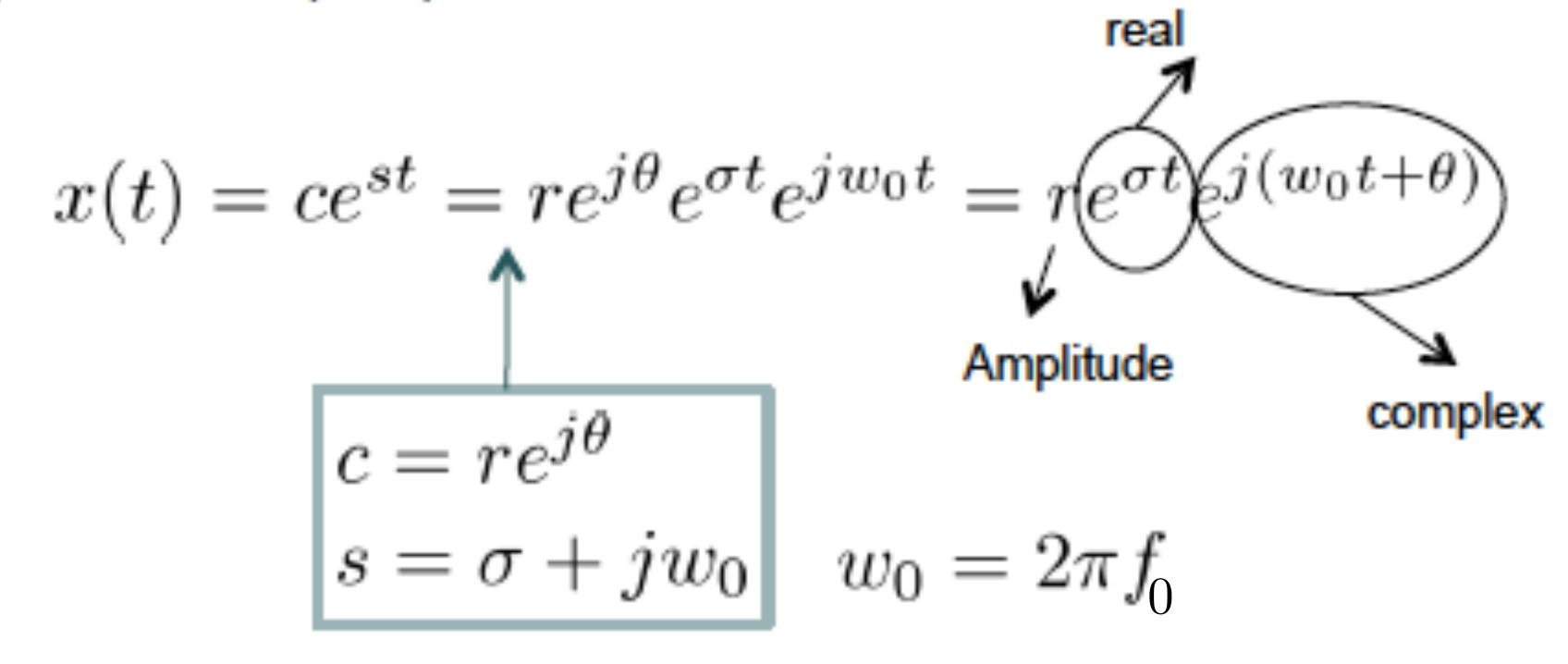
...and then make a plot !!!

1.2.2 Important signals in CT

Complex exponential (just imaginary part) in continuos time:

Euler Formula:
$$e^{jw_o t} = cos(w_o t) + jsin(w_o t)$$

Complex Exponential (CE)



Complex exponential in continuos time: in general, we will consider the simpler formula

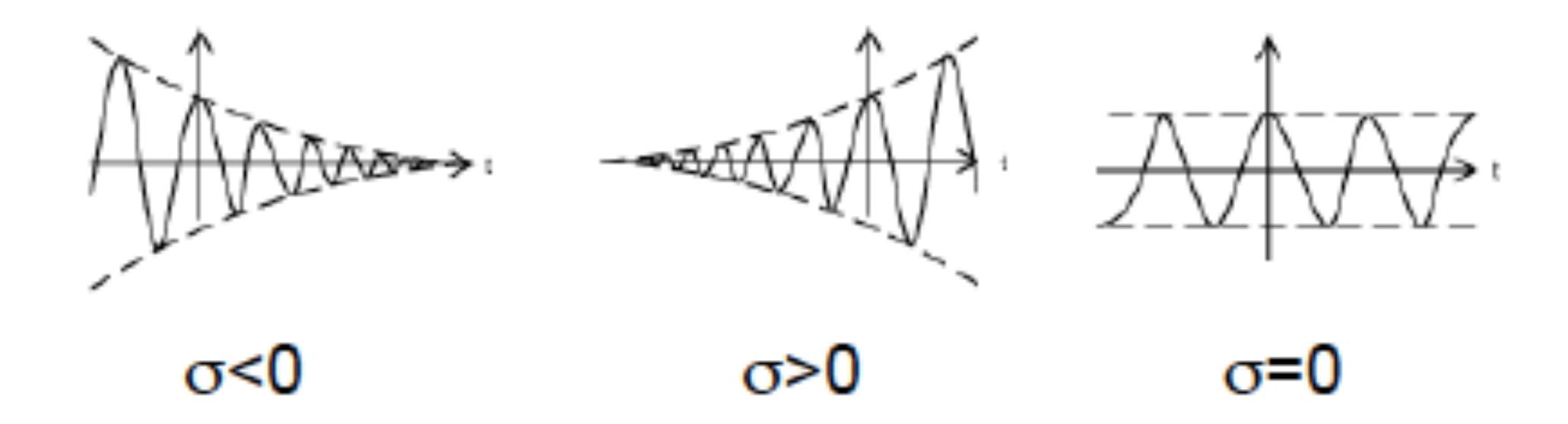
$$x(t) = e^{st} = e^{\sigma t} e^{jw_0 t}$$

where:

$$s = \sigma + j\omega_0$$

EXTREMELY IMPORTANT SLIDE:

$$x(t) = e^{\sigma t} \cos(\omega_0 t)$$



Dirac delta or impulse function

ightharpoonup Dirac delta or impulse: $\delta(t)$

Possible definition (no so "good" mathematically)

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

Note it has a unit area!

$$\frac{\frac{\delta_{\Delta}(t)}{\Delta}}{\frac{1}{\Delta}}$$

Properties:

$$x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)$$
$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t - \tau)d\tau$$

Note that the <u>Dirac delta in t=0 diverges (takes the values "infinite")</u>; it is not a stirctly function, it is a generalized function (or a distribution)

Properties of the Dirac delta

Properties of the unit impulse

- The area under the function is 1:
- Scaling property:
- Even property
- Sampling property
- Sampling property (ii)
- Sampling property (iii)

$$\int_{-\infty}^{+\infty} \delta(\tau) d\tau = 1$$

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

$$\delta(-t) = \delta(t)$$

$$x(t)\delta(t) = x(0)\delta(t)$$

$$x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$$

$$x(t_0) = \int_{-\infty}^{\infty} x(\tau)\delta(t_0 - \tau)d\tau$$

Therefore, any continuous-time signal can be decompose as a (infinte) linear combination of shifted and scaled unit impulses

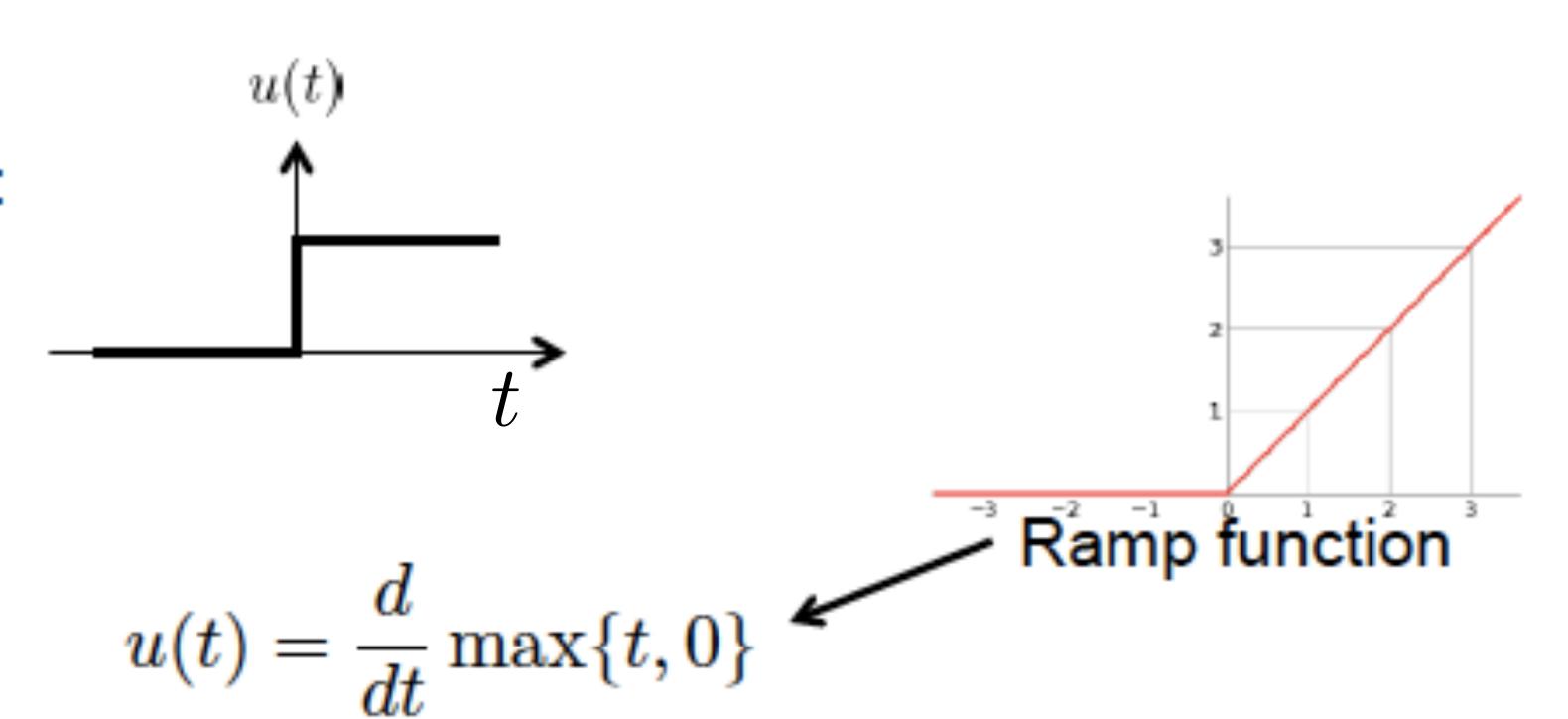
$$x(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t - \tau)d\tau$$

Heaviside function - step function

Heaviside step function u(t):

$$u(t) = \begin{cases} 1, t \ge 0 \\ 0, t < 0 \end{cases}$$

$$u(t) = \int_{-\infty}^{t} \delta(x)dx$$



It can be seen as the derivative of the ramp function

Heaviside function - step function

The Dirac delta can be seen as the derivative of the step function:

$$\delta(t) = \frac{du(t)}{dt}$$

Mathematically, we need the distribution theory....

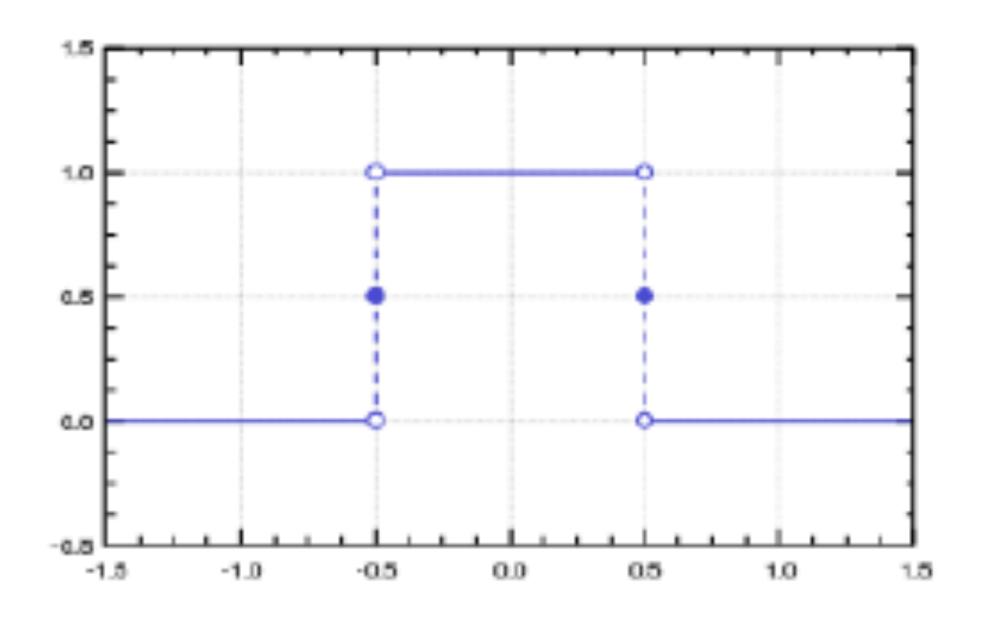
Rectangular function

ightharpoonup Unit Rectangle: p(t)

$$p(t) = \begin{cases} 1, & \text{si } |t| < 1/2 \\ 0, & \text{si } |t| > 1/2 \end{cases}$$

• Without unit area: $p_T(t) = p(t/T)$

$$p_T(t) = \begin{cases} 1, & \text{si } |t| < T/2 \\ 0, & \text{si } |t| > T/2 \end{cases}$$



Sinc function

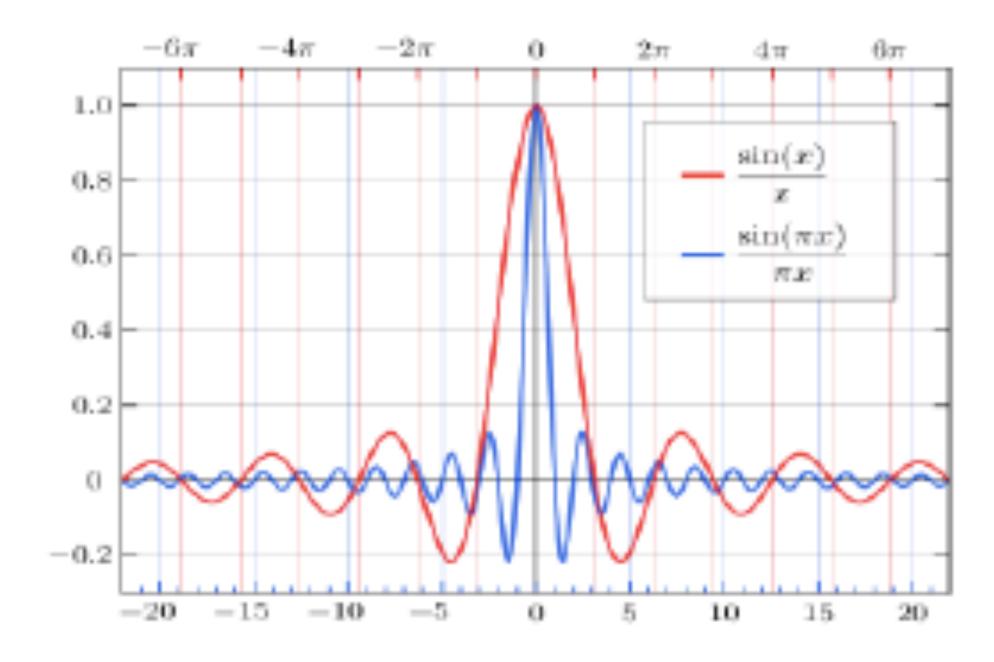
 \triangleright Sinc function: sinc(t)

$$sinc(t) = \frac{\sin(\pi t)}{\pi t}$$

Without unit area:

$$sinc_T(t) = sinc(t/T) = \frac{sinc(\pi t/T)}{\pi t/T}$$

* IMPORTANT REMARK: The zeros are at multiples of T!!!



Zeros at the multiples of 1 (or T) !!!!

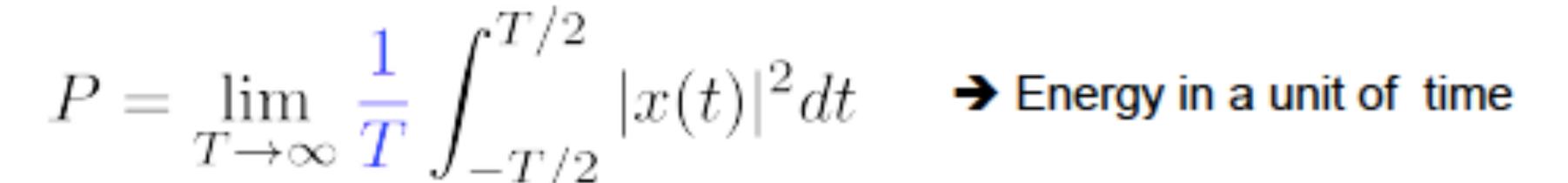
1.2.3 Some properties in CT

Main properties (signals in cont. time)

Energy:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
 For non-periodic signals

Mean Power:



Main properties (signals in cont. time)

For a periodic signal:
POWER = mean energy in an period To

$$P = \frac{1}{T_0} \int_{< T_0>} |x(t)|^2 dt$$

Main properties (signals in cont. time)

Recall:

- There are power signals and energy signals:
 - Finite Energy
 then the power is zero
 energy signal
 - Finite Power

 then the energy is infinite

 power signal
 - Some signals are neither energy nor power signals.
 - For a periodic signal: if the energy in one period is finite, then it is a power signal

1.3 Basic operations with signals in discrete time, and important signals in discrete time and main properties

1.3.1 Basic operations with signals in DT

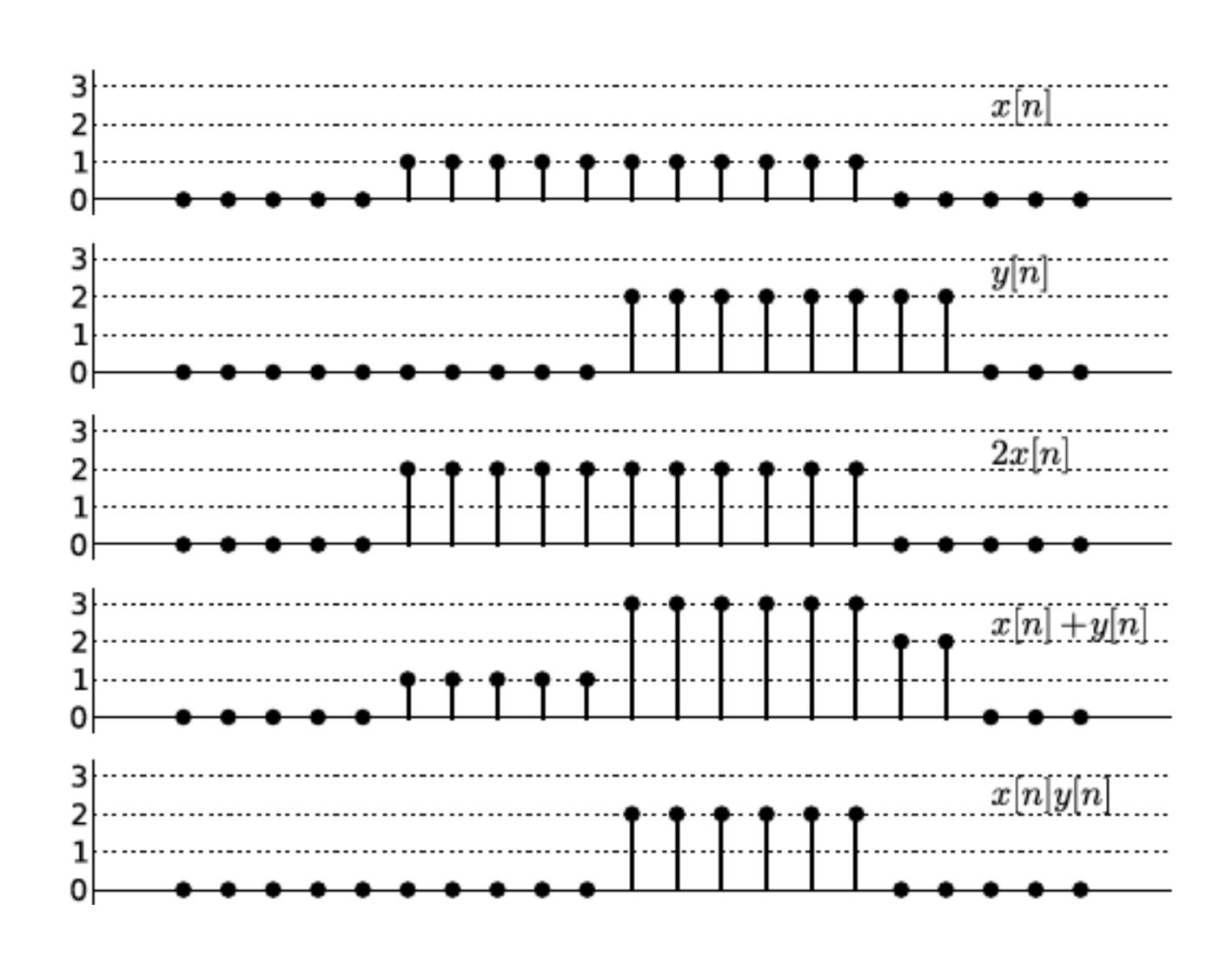
Basic operations about the dependent variable

$$\triangleright$$
 Change of scale of y[n]: $y[n] = K \cdot x[n]$

> Sum:
$$y[n] = x_1[n] + x_2[n]$$

ightharpoonup Product: $y[n] = x_1[n] \cdot x_2[n]$

Basic operations about the dependent variable



Basic operations about the independent variable

Translation/movement:

$$y[\mathbf{n}] = x[\mathbf{n} + \mathbf{n}_0] o \begin{cases} \mathbf{n}_0 < 0 o \text{To the right} \\ \mathbf{n}_0 > 0 o \text{To the left} \end{cases}$$

- The value n₀ must be an integer
- Symetric signal with respt to the the y-axis:

$$y[\mathbf{n}] = x[-\mathbf{n}]$$

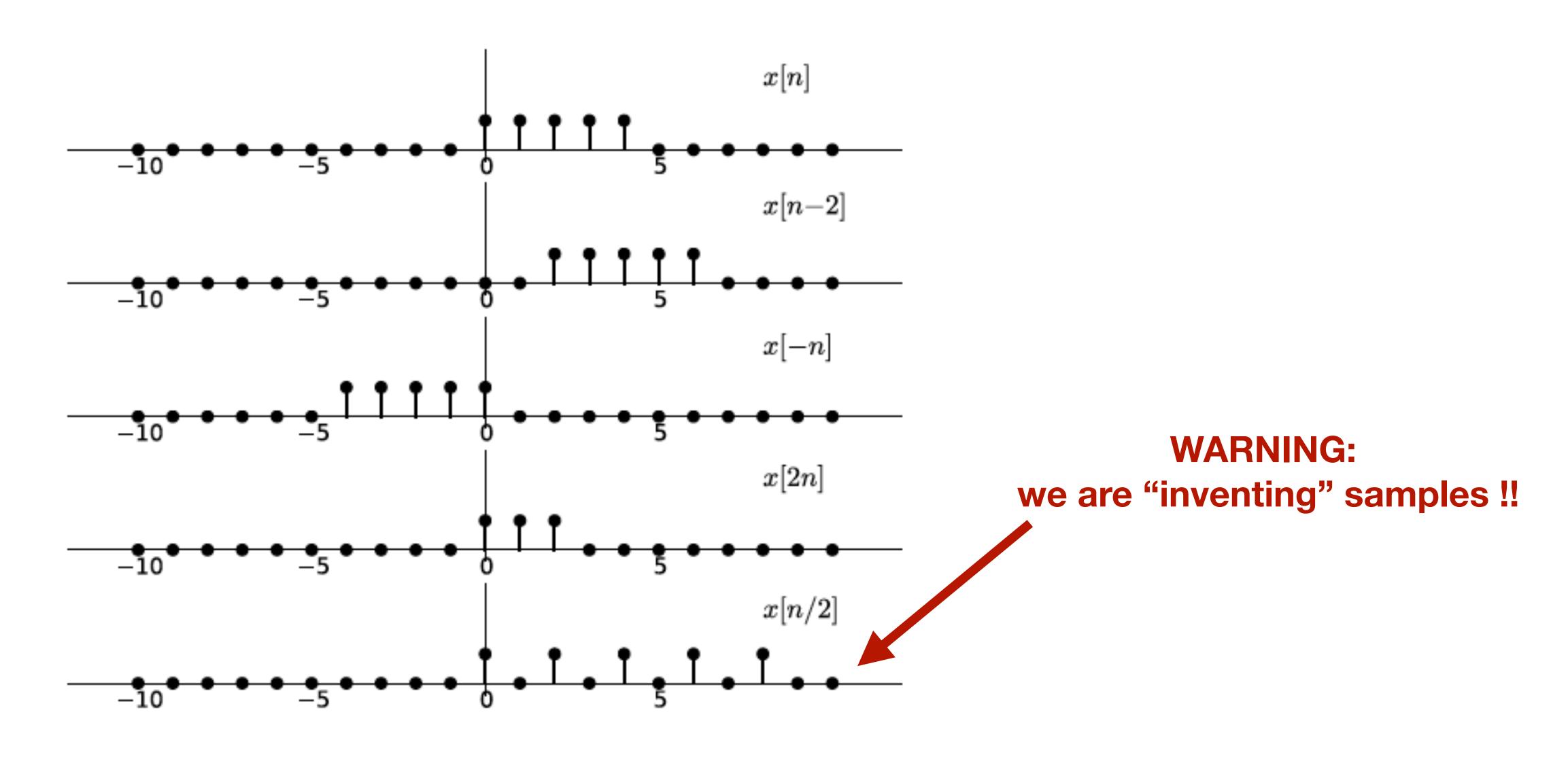
Change of scale: (rational values in DT)

WARNING:

be careful, in my opinion, the change of scale is NOT well-defined in DT !!!

$$y[\mathbf{n}] = x[\mathbf{an}]$$
 $\begin{cases} \exp \operatorname{ansion} & 0 \leq a < 1 \\ \operatorname{contraction} & a > 1 \end{cases}$ See other slides....

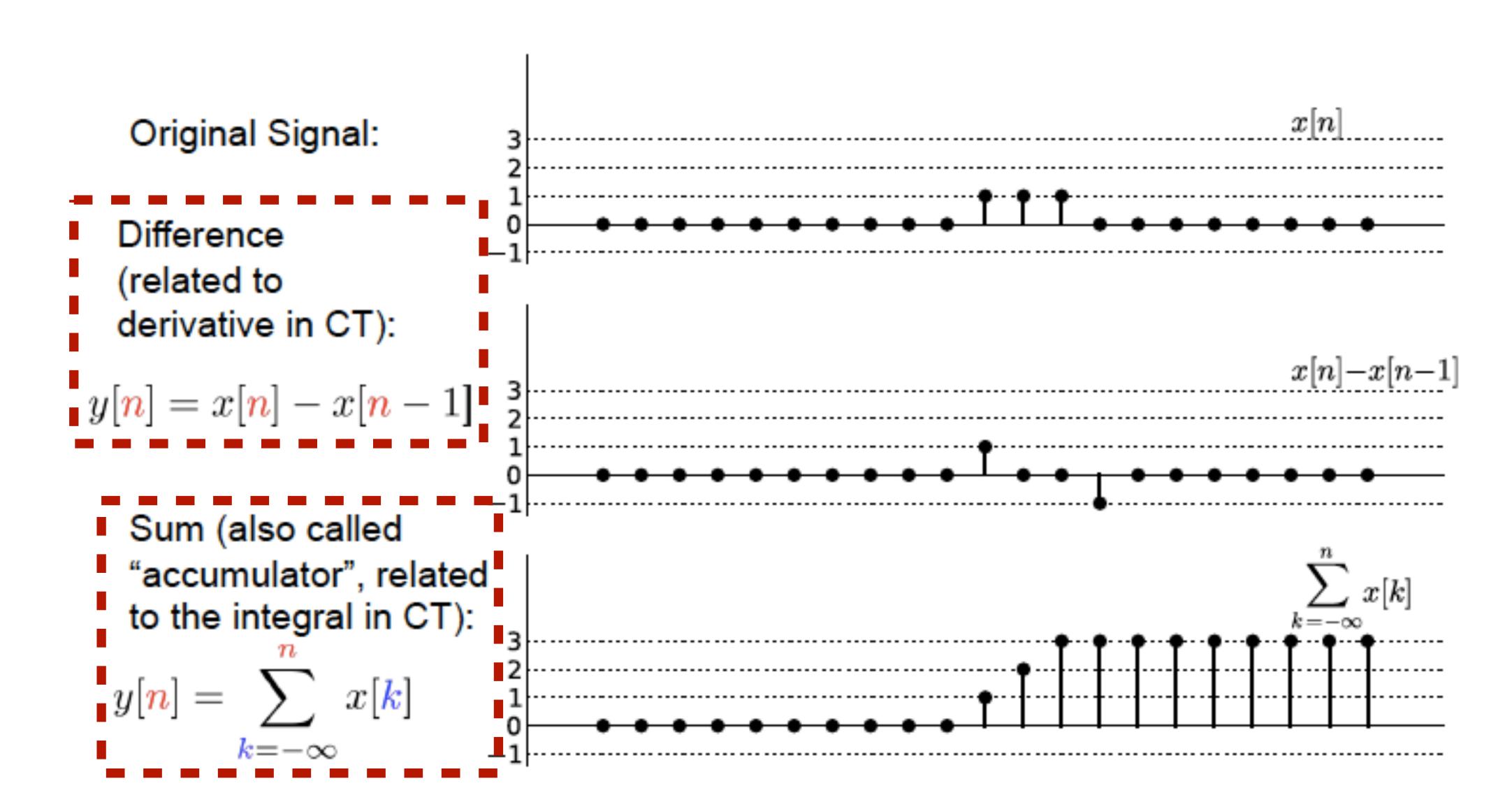
Basic operations about the independent variable



IMPORTANT: en DT, the scale change produces the following consequences:

- During compression, we lose samples
- During expansion, we have to add new samples (typycally zeros)
- REMARK: in the topic "SAMPLING", we will see how to do it without having any problems/issues

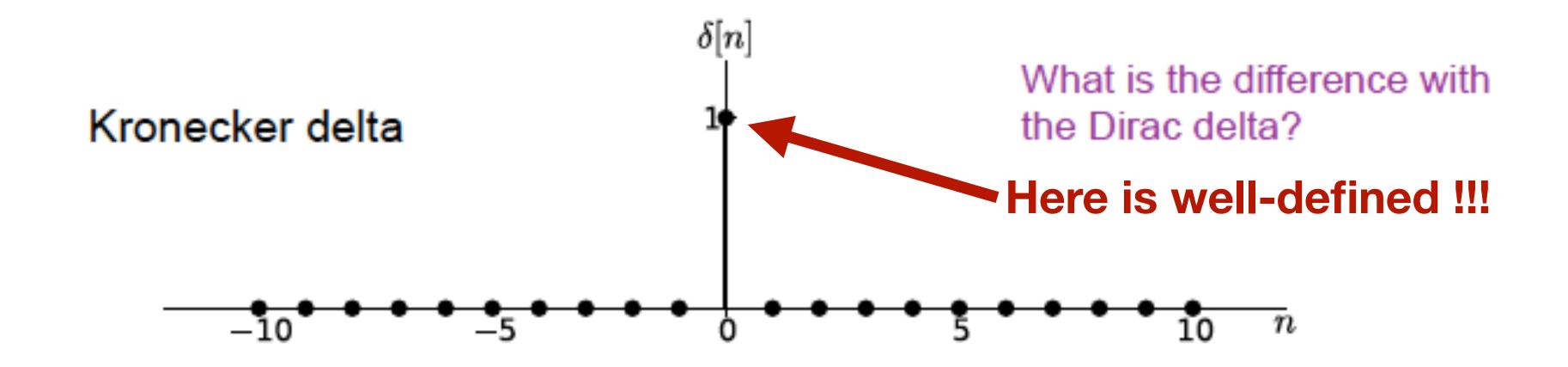
Difference and sum

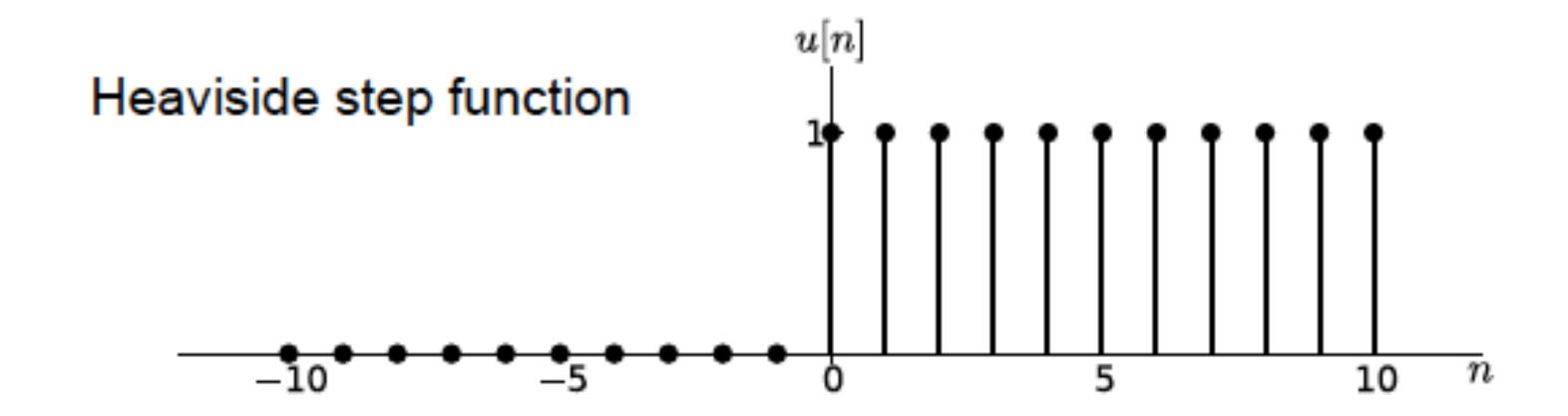


1.3.2 Important signals in DT

Important signals

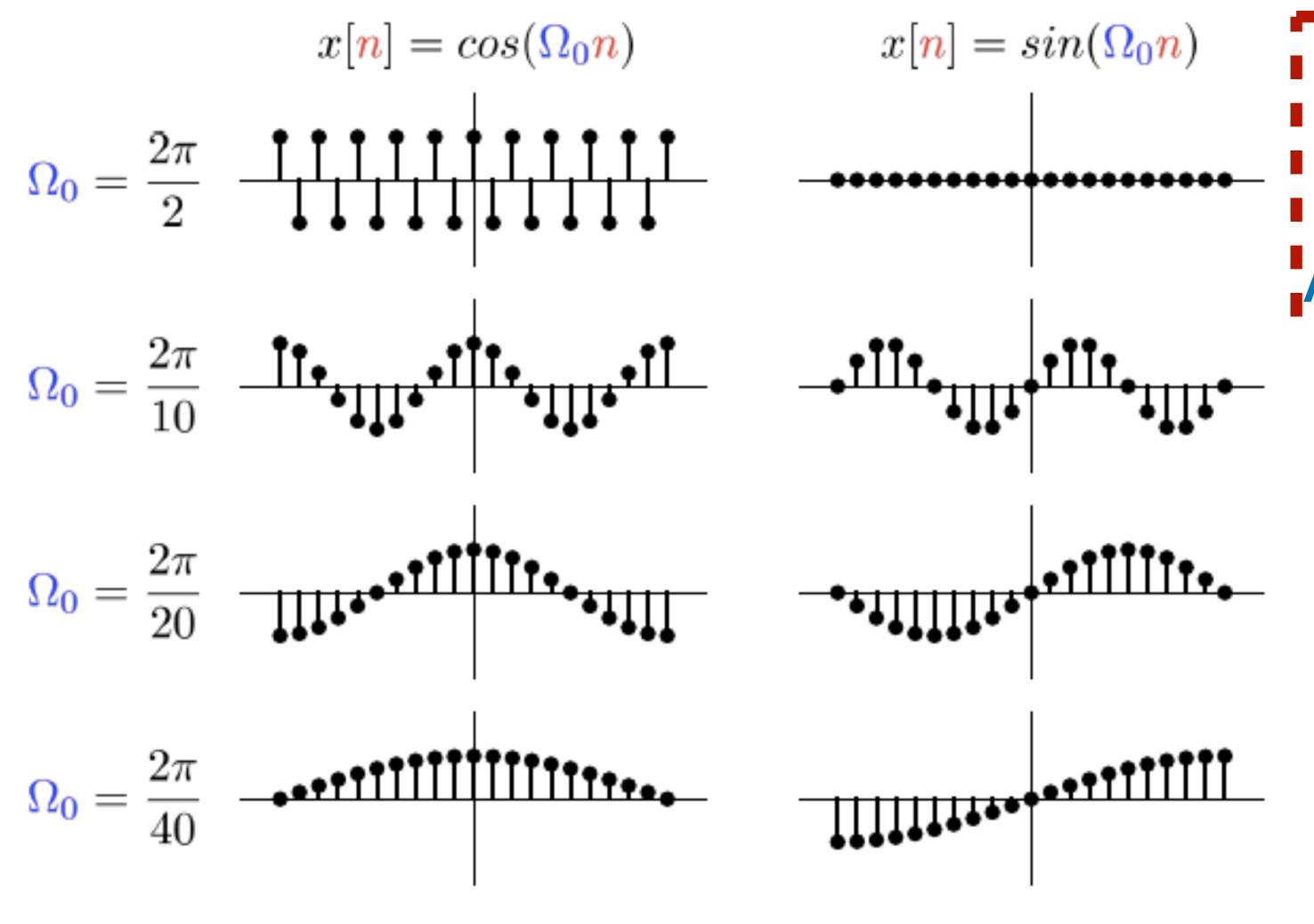
Basic signals: delta and step functions





Important signals

Basic Signals: sin and cos



WARNING:

IN DISCRETE TIME
cosine AND sine
ARE VERY "STRANGE"
AND COMPLICATED FUNCTIONS

Cosine and sine: some properties in DT

Basic Signals: sin and cos

- Properties of the sinusoidal signals in DT:
 - Two sinusoidal signals with angular frequency of just true in discrete time

$$\Omega_0$$
, $\Omega_1 = \Omega_0 + \frac{2\pi}{3}$

are identical.

They are periodic if and ony if the angular frequency can be expressed as:

$$\frac{\Omega_0}{N} = 2\pi \frac{m}{N}$$

WARNING:
IN DISCRETE TIME
cosine AND sine
ARE VERY "STRANGE"
AND COMPLICATED FUNCTIONS

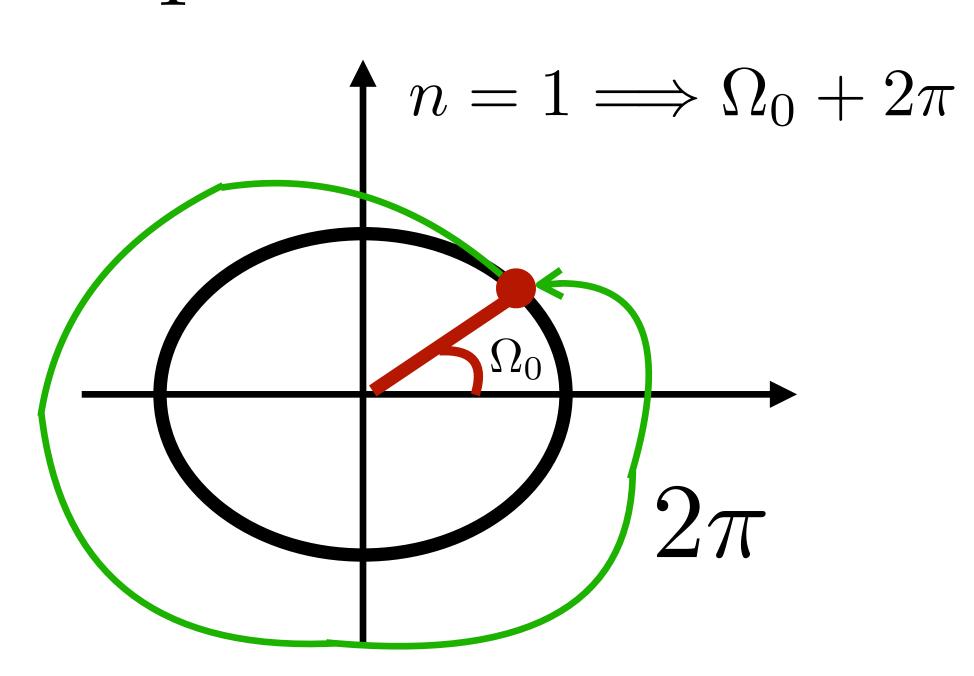
We will come back on this point in another class

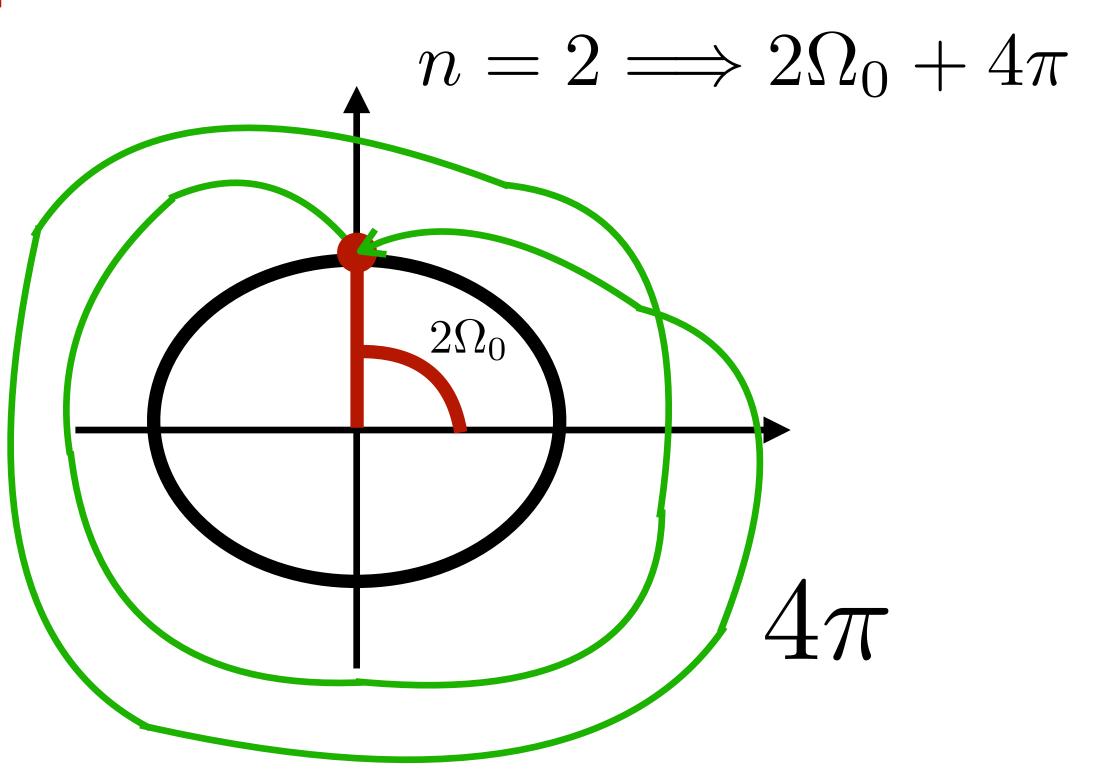
Where N and m are integers without common factors. In this case the period is N.

On property of sine and cosine (discrete time)

$$\Omega_0 = \frac{\pi}{4} \Rightarrow 45^\circ$$

$$(\Omega_0 + 2\pi)n$$





Since n is an integer, it defines only a unique point !!!!

On property of sine and cosine (discrete time)

In continuos time this is NOT true !! due t can take any real value !!!

$$(\Omega_0 + 2\pi)t$$

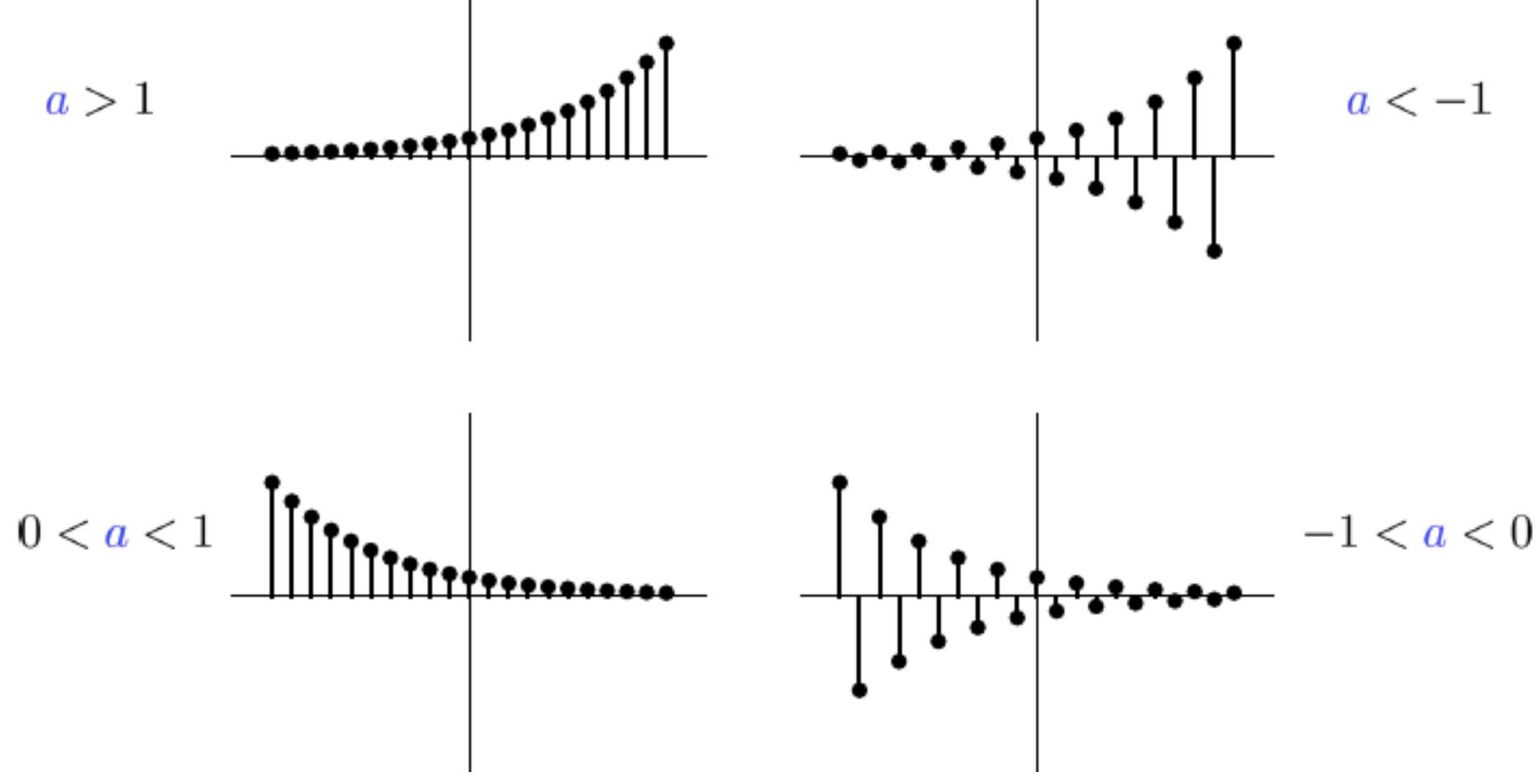
Try to do the plot yourself (making some example choosing some possible value of "t") (POSSIBLE QUESTION OF EXAM)

In the plot, we generate different points....

Important signals

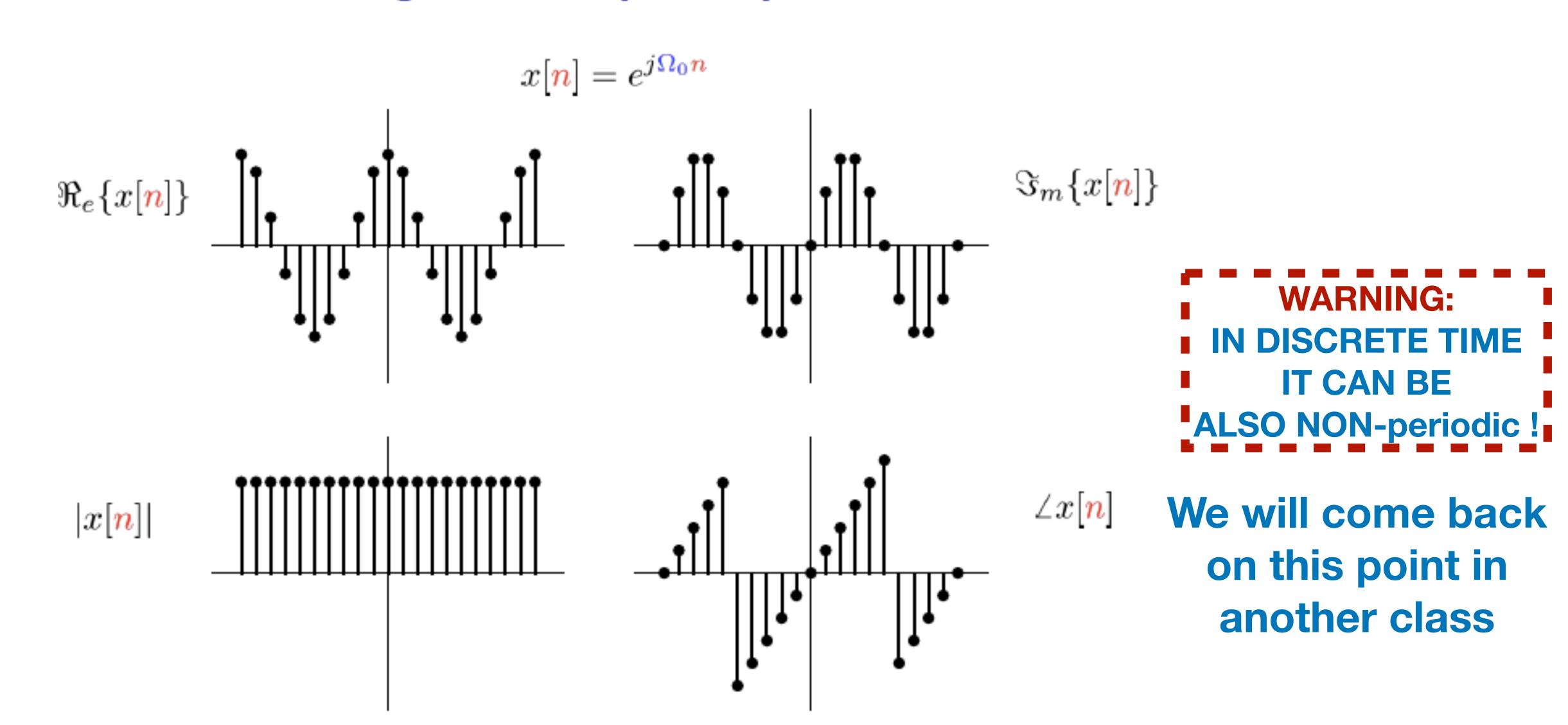
Basic signals: Real exponential/power function

VERY IMPORTANT SLIDE !!!!



Important signals

Basic signals: Complex exponential

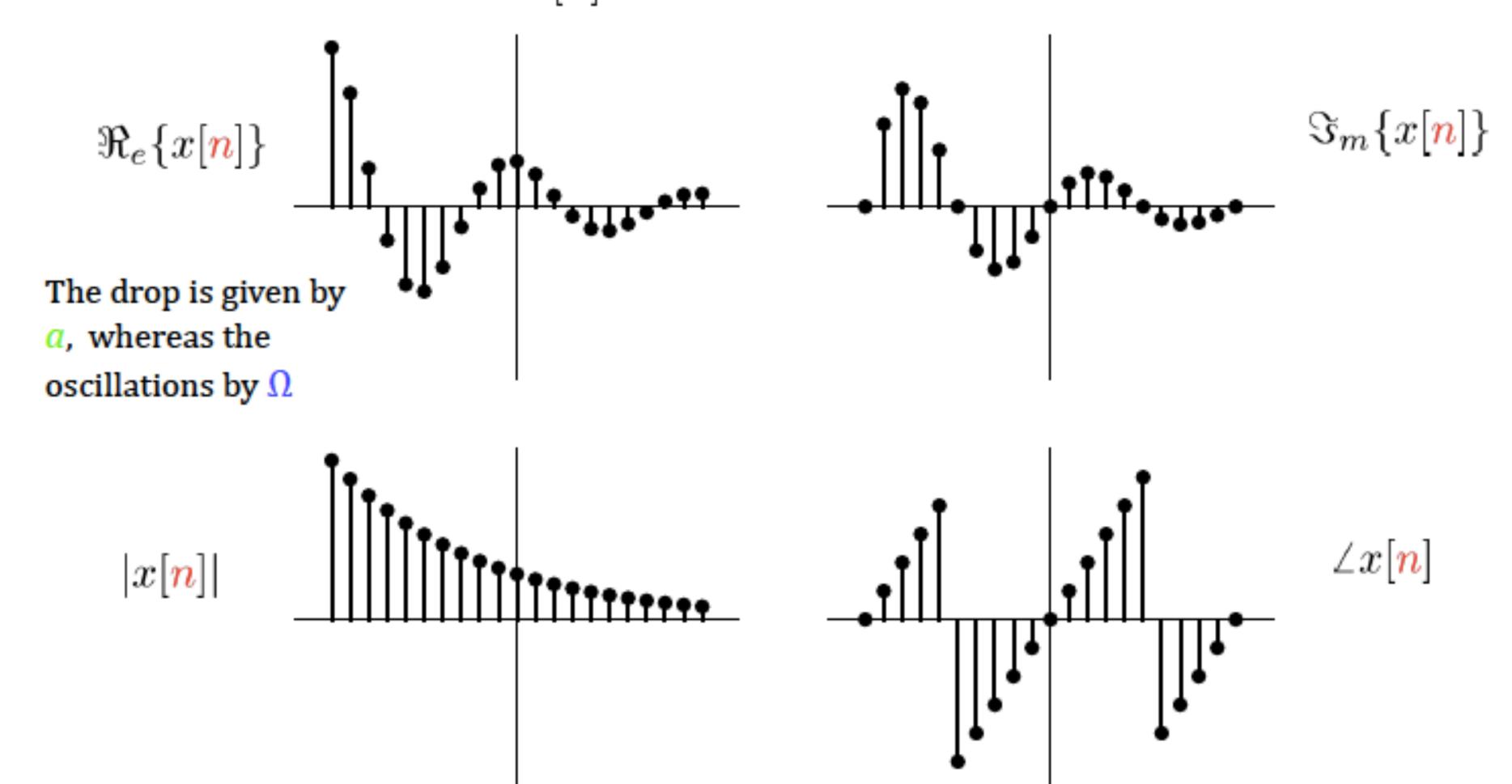


Important signals

Basic signals: Complex exponential with "damping"/envelope

VERY IMPORTANT SLIDE !!!!

$$x[n] = e^{(a+j\Omega)n} = e^{an}e^{j\Omega n}$$



1.3.3 Some properties in DT

Some properties of signals in DT

- Odd and even signals:
 - Even signal x[n]:

$$x[n] = x[-n]$$

Odd signal x[n]:

$$x[n] = -x[-n]$$

- Periodicity

• Signal
$$x[n]$$
 is periodic with periodic N if: $x[n] = x[n-N]$

N must be an integer !!!!

- Decomposition by Deltas
 - Any discrete signal can be expressed as a train of deltas:

$$x[\mathbf{n}] = \sum_{k=-\infty}^{\infty} a_k \delta[\mathbf{n} - \mathbf{k}] = \sum_{k=-\infty}^{\infty} x[\mathbf{k}] \delta[\mathbf{n} - \mathbf{k}]$$

Parameters: energy, power etc.

Area, mean value, energy, power:

$$A_{x} = \sum_{n = -\infty}^{\infty} x[n]$$

$$= \dots + x[-1] + x[0] + x[1] + \dots$$

$$E_{x} = \sum_{n = -\infty}^{\infty} |x[n]|^{2}$$

$$= \dots + |x[-1]|^{2} + |x[0]|^{2} + |x[1]|^{2} \dots$$

$$= \dots + |x[-1]|^{2} + |x[0]|^{2} + |x[1]|^{2} \dots$$

$$Fower in the problem of the problem$$

*Remark: with the notation |.| we have denoted the module of a vector (or a complex number), then the definition is valid also for complex signal.

Parameters: energy, power etc.

 \succ We can also define the energy in a finite interval $-N \le n \le N$ as

$$\frac{E_N}{n=-N}|x[n]|^2$$

Then the energy of the signal, E, is:

$$E = \lim_{N \to \infty} E_N$$

 \succ Also the power can be expressed as function of E_N ,

$$P = \lim_{N \to \infty} \frac{1}{2N+1} E_N$$

Parameters: energy, power etc.

- A discrete signal can be:
 - Energy signal: (finite energy and zero power)
 - Power signal:
 - Signal with infinite power:

$$E_x > 0, P_x = 0$$
 $E_x = \infty, P_x < \infty$
 $E_x = \infty, P_x = \infty$

We focus on energy ang power signals.

Questions?