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In this slides, WE WILL SEE:
1.1 Definition of signals, examples and classification

1.2 Basic operations with signals in continuous time (CT), and
important signals in CT and main properties

1.3 Basic operations with signals in discrete time (DT), and
iImportant signals in DT and main properties



1.1 Definition of signals, examples and
classification




1.1.1 Signals: definitions and classification



Main concept: signals

What is a signal? numbers/data varying with time and/or space....
Examples: time series, Images etc.

Mathematically:

m(t)? $[7’L] L E
y<t>7 y[n] n € /Z
z(t), zn] n=.—-3-2-10,1,23.

It is a function - one dimensional, Xx(t) - or bidimensional x(t1,t2) (e.g., images)



Main concept: signals

* Generally, we have real signals

* Oor complex signals

r(t), zln| € R

r(t), x

n| € C

Examples:

x(t) = sin(t)
r(t) =1

Examples:
r(t) = e 7t

(1) = jsin(t)



Signals
Recall of signals and systems in continuous time

» ¢What is a signal?

= |sa mathematical model” (a function) which represents a vanable of interests,
that changes with the time.

= Examples of signals: radio, volts, temperature, ...

x(t)

r-- Il B B B = = .- I
\_/_\ ,Signals and systems in

I
. ) o - i
Icontlnuous. time (CT): : 1+t c Ry
I l Il .

]

IWth e [ takes continuous
0 ! values

» One-dimensional (temperature in a place) vs. Multidimensional (for instance,
an image)



Signals
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— Example: voice.

S

» Continuous signals vs. discrete signals
= Continuous: defined for any real values.
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Discrete Signal
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« Discrete: defined for only for certain time values. s
t = EampleTinal prize of Stoc

cks (in a Stock market), every day.
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Continuous Signal

I REMARK: here we just look the x-axis. .. |



DISCRETE Signals

» A discrete signal is a sequence of real numbers and Is denoted as:

x[n]

z\n|,yln|, z|n|...

» In a Discrete Signal:

* The independent variable (n) takes integer values, 1.e., discrete

* The dependent variable (x, y, z...) takes real values, 1.e_, continouos



DISCRETE Signals: examples
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1.5

Special case:

Is a continuous or a discrete signals?

1.5
3

1.

I Each step represents a jump
; 2 ', of 0.6 in a continuos line...

L]

Considering the signal zero q 5 —1
in these regions in the middle...




Signals

Signals

continuous |discrete
(mainly in this course)

We look the x-axis !!!




Signals

» Digital Signals vs. Analog Signals

= Digital Signals: take only certain values (a finite number of values, In general)
within an interval of time.

= Analog Signals: can take a (infinite) number of continuous values In a (bounded or
unbounded) interval.
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Senal digital

Senal analogica

(Both)

continuous signals We look the y-axis !!!



Signals

Signals

Digital Analog
(in this course)

We look the y-axis !!!



Signals

Can you plot a discrete and digital signal ?



Signals
Analog/continuos versus Digital

¢ Continuos signal

4 DISCRETE SIGNAL
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>

I S ———— ———— " ——————————————

S ———— ———— o ————————————

Sampling + Quantization . I ST

(it only takes a finite | :":;:Z:.’::Z:Z:::::::::ZZ::
number of values) f.’I_'.'f::.'_'_'.'_'.'. A

—r— e ] —— — - ——————————

>




Signals

...and we have already saw:

Signals

/ \

Real Complex

(in this course)

We look the y-axis !!!



Complex signals

z(t) = a(t) 4 jb(t)

Complex Plane
Imaginary part

FOR A FIXED INSTANT t !!!

Re{z(t)} = a(t) " /<t>

Im{xz(t)} = b(t)

Module{z(t)} = |z(t)|* = a(t)* + b(t)"

phase{x(t)} = arctan




Way to plot a complex signal

Complex Plane 4 Complex Plane
Imaginary part Imaginary part
FOR A FIXED INSTANT t !!! VARYING t !I!!
b(t) /‘ (1) b(t) / z(t)
a(t) Real part CL( | ) Real part

IN THIS CASE IS A PERIODIC SIGNAL: why ?



Way to plot a complex signal




Complex signals: conjugate, real and im. parts

@ Complex conjugate of a signal:
x" () =R{x ()} —jS{x (1)} = a (1) —jb(2)
@ Real and imaginary parts can be obtained as:
R0} = > @+ O SO} = o () — 2" ()
J
@ The magnitude and argument can be obtained as:
MODULE [x()* =x() -x* (1) = R{x()})* + (S{x (1})

/{x(t)} = arctg ;g Egi




Signals

Signals

Odd Even non-
(in this course) symmetric



Examples (in continuos time)

» Real and Complex signals

= Complex signal

x(t) = x,(t) + juoi(t)
Example of a complex signal: !/':_/:' — (_,'[],;g: — ('()5'(::(..)-3/ | + ../'o""/.”[:()ﬁ/)
Example of a real signal: ;[;(t') — (_f(),s((),QSt)

» Odd and even signals: both real signal such that
Te(t) = Te(—1)
l'o(t) — _Io(_t)

» Generally, we can write 1
ze(t) = 5 [z(t) + 2(—1)]

: - 2

z(t) = ze(t) + To(1)

T~ (t) = 5 [x(t) — (1)



Signals

Signals

/

Hermitian Anti-he

itian
non-symmetry In
(in this course) complex plane



Hermitian/anti-hermitian signals (cont. time)

» Hermitian and anti-hermitian signals:

= Hermitian signals (if real, then Is an even signal):

= anti-hermitian signals (if real, then 1s an odd signal):

xr(t) ol S A 4



Hermitian/anti-hermitian signals (cont. time)

IS,
- x(£) = x(f) + xa(2)

:o Hermitian and antihermitian components can be computed as:

. w(®) = S0+ (<0 xalt) =  [e(t) — " (1]



Signals

» Deterministic Signals vs. Stochastic Signals

= Stochastic Signals: contain randomness
= the definitions, formulas and the treatment change



Signals

Considering known
density, correlation etc.



Signals

Slgnals

Chaotic

non- perlodlc

(|n this course)

qua5| periodic

perlodlc

(|n this course)

(aperiodic)



Summary - periodicity

R N

e ___ T

Quasi-periodic Pseudo-periodic
Periodic X =a{x,D),..x, (1) Equivalent norms of all
x(f) =x(1+T) x;(t) periodic inear-trar_nslaled
Ex: sum of hanmnonics T,/ T, irafional combinations

with finearly dependent , : Ex: surn of damped
£x- sum of harmonics / . s, narrow-band

penods with finearty independent

-
\\/_/ //

Almost-periodic
VE. T, | x(t+ T)—x(t) |< €

EXx: surn of sinusoids

T~ —

\\ /_/

Periodic, quasi-periodic, almost and pseudo-periodic signals.



Periodic signals (continuous time)

» Periodic signals:

'T is the fundamental period:

[ - | ,hote that the signal is repeating
CT: 3T >0 2(t) =2(t+T), Vit ;each 2T, 3T, ... -
1

, Question: if we sum different :

. M r\f\I | (\/\| | f\/\l (\/\' g periodic signals (with differents
T l

T T T, 0 T. T 1 period), the obtained signal is®

i
«1/2 T/2 -

I periodic? And if we multiply
! different periodic signals?

T'Is a real positive number We will come back to this point... In

another class

We will come back to periodicity in aonther class, since the
discrete case is quite more complicated.



Periodic signals (continuous time)

Fundamental period

@ If x(¢) is periodic with period 7, it is also periodic with periods 2T, 37, .. ..

@ We call fundamental period, T, to the smallest value of T for which the equation
x(t) = x(t + T) holds.



Signals

Power Energy

(in this course)

» Recall:

= There are power signals and energy signals:
— Finite Energy =» then the power Is zero = energy signal

— Finite Power = then the energy Is infinite =» power signal
— Some signals are neither energy nor power signals.
— For a penodic signal: if the energy in one penod is finite, then it 1Is a power signal



1.1.2 (Motivational) Examples of signals



“Motivational” examples

Medical Image: CAT ADN: Microarray
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“Motivational” examples

DNA
sequence
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“Motivational” examples

Registro unipolar

Referencia comun

Fp2

F8

T4
6

02



EEG: children 8-12 years, healthy in
REM

A A ™ —-
(' .'A.¢ QJ\\ - - - :’ ‘_ - "
/\/ 1(.“A/ ‘ o \\ .f\ )o\v‘-\d v \v/ \/J‘,V - EEGl
V. \ M - \
W . '\ P \ . M 'y
. \ ’ J--J‘J '\/V\ e & )‘ ‘~ g .'A . 2 ol -
R i g - ')
'

- "\“,/‘.'") . w’/\ M I ™ - AN

v T\ '-'\/ W M EEG,
p— v \ ’A\ 1“% N V-”V’\ o"’ . ~ - ./f\

. V‘pw o o I ""\\d \‘A.'_'-’ \ “/ W

~ o "\
, \w\‘ Ngﬂ .o -y I“\ ’ -\.d\.h \\ P .’c \v,\ '/ .~\\.’A.
' k/ \» / T =
. / . e ™~y ~
\AH\"\\( e \” “‘ /&V" "\/ \f ”.‘.\n/\\ N ‘N i ".\ ,

\ / A " EEG
I-A{I -\ 2
s 'V ‘O A . F o N g \’\‘).

\ o/\.‘\ ’\I\L '/‘\~W"

“Motivational” examples
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*Range span: active calm -> intense -> stressed -»
mild obsessve
*Active thinking, focus, h alert, anvious

*Relaved/reflecting

*Closing eyes
*Inhibition cont rol

*Higher in young children

*Drowsiness in adults and teens

*Idling

*When trying to inhibit a response or action

*Adult low -wawe sleep
*In babies
*During some continuous-attention tasks



“Motivational” examples

Specra fom A + B
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Spectra!
Frequency response
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“Motivational” examples
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“Motivational” examples

Figure 3.15 (p. 214)
Electrocardiograms for two different heartbeats and
the first 60 coefficients of their magnitude spectra.
(a) Normal heartbeat.
(b) Ventricular tachycardia.
(¢) Magnitude spectrum for the
normal heartbeat.
(d) Magnitude spectrum for

ventricular tachycardia. oo
0 ‘l’l|||||||||l|||||III|‘f'| Vitoos

A ‘.) M) ;’
AN My 1 5



“Motivational” examples: in this course...

Electrical signal Uigkal signal {.TH AN
............. discrete time TS EINETT
sampling
Chemical/Physical Electrical signal
signal Continuous time |

19



1.2 Basic operations with signals Iin cont. time,
and important signals in cont. time and main
properties



1.2.1 Basic operations with signals in CT



Operations with signals

» What can we do?

* Any mathematical operation.

» Examples:

= Levellamplitude change: = Azx(t)

s Tranclation: — z(t — to) Recall on the blackboard
= Time inversion: — z(—1) and in your mind...
= Change of scale: — x(at)
L dz(t)
= Dervation —

dt ¢
= ntegration — / z(7)dr
0



Operations with signals

Suggested strategies: build a table !

L Ax(t), x(t — tg), x(at), etc.
0 correspondent value

—1 correspondent value

1.5 correspondent value
2 correspondent value

...and then make a plot !!!



1.2.2 Important signals in CT



Specific relevant signals in cont. time

Complex exponential (Just imaginary part) in continuos time:

Euler Formula: e?%°* = cos(w,t) + jsin(w,t)



Specific relevant signals in cont. time

» Complex Exponential (CE)

1 v

1 Amplitude

:11?(1‘») — ce’t = relleteiwot —

c = rel?
s =0+ jwo| wy =2




Specific relevant signals in cont. time

Complex exponential in continuos time:
In general, we will consider the simpler formula

Qf(i) __ GSt __ eatejw()t

where:

s = o0 + Jwo



Specific relevant signals in cont. time

EXTREMELY IMPORTANT SLIDE:

z(t) = e”" cos(wpt)

N ”

/4"

/\;/“\(V ",' , - __' 7\
/ NS> &QRU': yAVILVEAYES

V ~

/ ~

o<0 o>0 o=0




Dirac delta or impulse function

» Dirac delta or impulse: 5(t)

= Properties:
ve(l)oll — L) = xllg)o(t —tg)
[ [
1 . | i
1z(t) = / r(T)o(t —7)dT
i — 0 i

Possible definition
(no so “good” mathematically)

3(t) = Jim 5a (1

A

—

oa(t)

Note it has
a unit areal

Note that the Dirac delta in t=0 diverges (takes the values “infinite”); it 1s noft a stirctly

function, it i1s a generalized function (or a distribution)




Properties of the Dirac delta

Properties of the unit impulse

& The area under the function is 1:

/::o O(t)dr =1

@ Scaling property:
d(at) = id (1)

aj

© Even property
d(—t) = &(1)

& Sampling property
x(1)8(t) = x(0)5(7)

x(2)d(t — to) = x(t0)o(t — 1)

©@ Sampling property (ii)

Q Sampling property (iii)
x(tp) = /_ x(7)0(to — 7)dT

& Therefore, any continuous-time signal can be decompose as a (infinte) linear combination of shifted and
scaled unit impulses

x(t) = /—+Oo x(17)é(t — 7)dTr



Heaviside function - step function

u(t)

Heaviside step function u(f):
3 /
o Jrt=o0 |
ult) = >

¢ Ramp %';Jnlctibn
. d
u(t) = / o(z)dr u(t) = pr max{t,0} "

It can be seen as the derivative of the ramp function



Heaviside function - step function

The Dirac delta can be seen as the derivative of the step function:

Mathematically, we need the distribution theory....



Rectangular function

» Unit Rectangle: p(t)

n 1. s1 /]| <
PLr ) = | .
(). <1 | =

= Without unitarea: pr(t) = p(t/T)

(p . sttt <1/
byl o
rre 0, =1t =1/

v Io

__

v Do




Sinc function

» Sinc function: sinc(t) 0 0
) /‘r\ —
__ sin(7t) 0.6} | __ win{wr)
sinc(t) = — | ‘\' = | ]
= Without unit area: 2r " '“ 1
o eoaviiiineacs
siner(t) = sine(t/T) = 22azt/T) \’b"'

nt/T

N Zeros at th Iti 1
IMPORTANT REMARK: The zeros are at multiples of T I LIRS SRUSpSES 08 'Y wor 1) S




1.2.3 Some properties in CT



Main properties (signals in cont. time)

» Energy:

E = / z(t)|%dt For non-periodic sngnals '

| (-——'—_"__—
. x4 h B ®E B B = I I I I I I = = ==
» Mean Power:

o
| " o,
F l1m |,;'|"f') =t = Energy in a unit of time
, - T



Main properties (signals in cont. time)

For a periodic signal:
POWER = mean energy in an period To

1
P=_— (1) dt

TO <dp>



Main properties (signals in cont. time)

» Recall:

= There are power signals and energy signals:

— Finite Energy = then the power Is zero = energy signal

— Finite Power = then the energy iIs infinite =» power signal

— Some signals are neither energy nor power signals.

— For a penodic signal: if the energy in one penod is finite, then it Is a power signal



1.3 Basic operations with signals in
discrete time, and important signals In
discrete time and main properties



1.3.1 Basic operations with signals in DT



Operations with signals in DT

Basic operations about the dependent variable

» Change of scale of y[n]: yln| = K - xn]
y\n| = xy|\n +aon]

y[n] = z,1[n]-xan]



Operations with signals in DT

Basic operations about the dependent variable

w O = N W
;.;
r_!
[

v v v
. . .
. . .

o v v
. . .
. . .




Operations with signals in DT

Basic operations about the independent variable

» |lranslation/movement:

) ~J o <0 — To the right
U_H\ — ,I-IH -+ N||] — {“ - | To the Iegft
n = >

= The value ng must be an integer

» Symetric signal with respt to the the y-axis:

yln] = x[—n] WARNING:

be careful, In my opinion, the change of scale
» Change of scale: (rational values in DT) / is NOT well-defined in DT !!!

—

| L expansion () < g < 1 See other
y[”] = & [”N] 7] contraction a > 1 slides....




Operations with signals in DT

Basic operations about the independent variable

z(n|

—'],O...'—‘S....ITTTTg....’

z(n—2|

—.10....—.5....6.TTTET..'.

z[—n|

.]..O...TTTT{Q.Q.§QQ...

WARNING:
we are “inventing” samples !!

olooooocoooiTroogooooo
{ .r[n/2]

.1000000000 22—

z[2n|




Operations with signals in DT

» IMPORTANT: en DT, the scale change produces the following
consequences:

= During compression, we lose samples

= During expansion, we have to add new samples (typycally zeros)

= REMARK: In the topic "SAMPLING”, we will see how to do it without having any
problems/issues



Operations with signals in DT
Difference and sum

Original Signal: e OSSOSO . I :
2 ............................................................................................................... -
B B BB B B B BN B E B I 1 """"""""""""""""""""""""""""""""""""""""""""""""""""""""""
+ Difference e ———————————————
: (related to j
, derivative in CT): [
- ! z(n|—x[n—1]
yin| = z[n| —aln — 1]: 3ﬁ::ﬁIZ:::I:::ZfﬁﬁfﬁZ::::I:Z::I::I:::I:I::II:I::::I::::IZII::::I:
ol ""”""T°'l"°"" """"

Sum (also called :

“accumulator”, relatedI
k
to the mtegral inCT): N o L—z—:ocm[]




1.3.2 Important signals in DT



Important signals

Basic signals: delta and step functions

d|n]
What Is the difference with

Kronecker delta 1 \ the Dirac delta?
Here Is well-defined !!!

e o 8 & 0 & & 0 0 o ¢ o o o e o 0o o 0
—10 -5 10 ™

u/n|
Heaviside step function

*

9o 9o o o o o oo
10 -5



Important signals

Basic Signals: sin and cos

WARNING:
IN DISCRETE TIME
cosine AND sine
ARE VERY “STRANGE”
tAND COMPLICATED FUNCTIONS,

x|n] = cos(2n) x\n] = sin(Qon)

27T
(g = Y — 9000000000000 00000000—

2

O = “n %%
10

0y = =T Wﬂmw Wﬂﬁmhk
20

Oy = m W_.uﬂlmT_L
40




Cosine and sine: some properties in DT

Basic Signals: sin and cos

» Properties of the sinusoidal signals in DT: - -VTIKRRIII-\I(-E'- - ':
= Two sinusoidal signals with angular frequency of just true In : IN DISCRETE 'i'IME ;
discrete time , - - [

. _ 5 cosine AND sine
o, =Sl +2m »1  ARE VERY “STRANGE”
are identical. AND COMPLICATED FUNCTIONS,

= They are periodic if and ony If the angular frequency can be expressed as:

We will come back

, m . NON-
() Zﬂ'T gcos(in) = SERIODIC ”””: on this point In

Where N and m are integers without common factors. In this case the period i1s .




On property of sine and cosine (discrete time)

)y = % = 45° Q() 27’(’

n:1:QO+27T

Since n is an integer, it defines only a
unique point !



On property of sine and cosine (discrete time)

In continuos time this is NOT true !
due t can take any real value !!!

(Q() -+ 27T)t

Try to do the plot yourself (making some

example choosing some possible value of “t”)
(POSSIBLE QUESTION OF EXAM)

In the plot, we generate different points....



Important signals

Basic signals: Real exponential/power function

T _ Cv I
VERY IMPORTANT SLIDE !t r[n] = Ca

a > 1 ]HIHl a< —1

D<a<] HIHI —1 <a<(




Important signals

Basic sighals: Complex exponential

r|n| = ed*ton

Re{x(n|} Smiz(n/}

©  WARNING:
1 IN DISCRETE TIME °

1 ITCANBE

"ALSO NON-periodic !,

2] Zz[n]  We will come back
on this point In
another class




Important signals

Basic signals: Complex exponential with “damping”/envelope

VERY IMPORTANT SLIDE !!!! r\n| = elatifdn _ an jQn

Re{z[n]} Smiz[nl)

The drop is given by
, Whereas the

oscillations by ()

z[n]| Lx(n|




1.3.3 Some properties in DT



Some properties of signals in DT

» Odd and even signals:

= Fven signal x{n]; z(n] = x[—n]
= Odd signal x{n): r[n] = —x[—n]
» Periodicity e

= Signal x[n] is periodic with periodic N if: ¢ || = x{n — N} :

N must be an integer !!!!
» Decomposition by Deltas

= Any discrete signal can be expressed as a train of deltas:

T s
B ' B
1z|n| = Z apd|n — k| = Z z|k|é[n — k]
. k=—oc f=—oc :



Parameters: energy, power etc.

» Area, mean value, energy, power:

- AREA 0 ENERGY
A, = Z z|n) Fry = Z ]|
= ...+ z[-1] + 2[0] + z[1] + ... = oo+ [2[=1]|* + |2[0]]* + |=[1]|*
MEAN VALUE POWER
1 N 1 N
el — Ty — lin ,_ 2
° = (zn)) \]E:]x 2N +1 ;\I[] \]E}lx 2N +1 ;N z{n]]

*Remark: with the notation |.| we have denoted the module of a vector (or a complex
number), then the definition I1s valid also for complex signal.



Parameters: energy, power etc.

» We can also define the energy In a finite interval - NV < n < N as

N

BN = Z z[n]|?

n=-—N
» Then the energy of the signal, E, Is:

F= lhim Exy

N—ox

» Also the power can be expressed as function of /', ,

]
— |lim E'
Nosoo 2N +17 1




Parameters: energy, power etc.

» A discrete signal can be:

= Energy signal: (finite energy and zero power) Fo.>0,/,.=0
= Power signal: Fop = 00,17 < OO
= Signal with infinite power: F.,.=00,1", =00

» We focus on energy ang power signals.



Questions?



