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Monte Carlo techniques, which require the generation of samples from
some target density, are often the only alternative for performing
Bayesian inference. Two classic sampling techniques to draw indepen-
dent samples are the ratio of uniforms (RoU) and rejection sampling
(RS). An efficient sampling algorithm is proposed combining the
RoU and polar RS (i.e. RS inside a sector of a circle using polar coor-
dinates). Its efficiency is shown in drawing samples from truncated
Cauchy and Gaussian random variables, which have many important
applications in signal processing and communications.

Introduction: Bayesian inference has become very popular in signal
processing and communications during the past few decades. Monte
Carlo techniques, such as Markov chain Monte Carlo (MCMC)
methods or particle filters, which are often necessary for their implemen-
tation, require the generation of samples from some target density [1].
Two classic sampling techniques, that are often used together, are the
ratio of uniforms (RoU) and rejection sampling (RS). In this Letter we
propose an efficient sampling algorithm combining the RoU and polar
RS (i.e. RS inside a sector of a circle using polar coordinates), instead
of the usual rectangular RS approach (i.e. RS inside a rectangular area
using Cartesian coordinates), which can be inefficient in some cases.
We show the efficiency of the algorithm in drawing samples from trun-
cated Cauchy and Gaussian random variables (RVs), which have many
important applications in signal processing and communications [2–4].

Ratio of uniforms and rejection sampling: RoU is a classic technique
for generating samples from an arbitrary probability density function
(PDF), p0(x) = kp(x) with k . 0 [5]. Given a pair of independent
RVs, (u,v), uniformly distributed inside

Cp = (u, v) : 0 ≤ u ≤
�������
p(v/u)

√{ }
(1)

then x ¼ v/u is distributed exactly according to p0(x), i.e. x�p0(x).
Hence, the RoU method allows us to draw samples from any PDF, as
long as the resulting region Cp is bounded, simply by generating a
couple of independent uniform RVs.

Unfortunately, the efficiency and applicability of the RoU depends on
the ability of generating uniform samples inside the region Cp, which is
often not straightforward. The usual approach is embedding Cp inside
the rectangular region Rp (Fig. 1b) and applying rectangular rejection
sampling (RS). RS is another standard technique for generating
samples from an arbitrary target p0(x) = kp(x) PDF, by using an alterna-
tive, simpler proposal PDF, p(x), such that p(x)/p(x) ≤ L [5]. RS works
by generating samples from the proposal density, w � p(x), accepting
them when z ≤ p(w)/[Lp(w)], with z � U ([0, 1]) uniformly distributed,
and rejecting them otherwise.
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Fig. 1 Region Cp and embedding regions Rp and Sp

a Cp ¼ Sp for Cauchy and truncated Cauchy RVs
b Cp, Rp and Sp for a Gaussian and Sp for a truncated Gaussian

The combination of the RoU and rectangular RS yields the following
algorithm for generating each sample x � p0(x): draw two independent
uniform RVs, (u,v), inside Rp; accept the (u,v) pair if it belongs to Cp

(i.e. if the inequality in (1) is fulfilled), obtaining the generated RV as
x ¼ v/u; otherwise, discard (u,v) and keep generating pairs of samples
until (u,v) [ Cp. The key performance measure for this algorithm is
the acceptance rate (i.e. the percentage of candidate samples accepted),
which is given by GR = |Cp|/|Rp|, where |Cp| and |Rp| denote the areas
of the regions Cp and Rp, respectively. Unfortunately, for many RVs of
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interest GR may be too low, leading to a large number of candidate
samples being discarded. Therefore, alternative embedding areas
which can be easily sampled, such as combinations of rectangles [6]
or triangles [7], have been proposed to improve the acceptance rate.

RoU and polar RS: Another geometric area where uniform samples can
be easily generated and that has not been exploited for RS is a sector of a
circle, i.e. the region bounded by two radii of the circle and the arc of the
circumference lying between them (Fig. 1a). Uniform sampling inside
the sector delimited by angles u1 and u2 and radius r0 can be achieved
by drawing two independent samples from:

pe(u) =
1

u2 − u1
, u1 ≤ u ≤ u2

0, otherwise

⎧⎨
⎩ (2)

pR(r) =
2r

r2
0

, 0 ≤ r ≤ r0

0, otherwise

⎧⎨
⎩ (3)

Sampling from (2) only requires generating u � U ([0, 1]) and scaling it,
obtaining the suitable angle as u = u1 + (u2 − u1)u. Sampling from (3)
is slightly more involved, requiring the generation of two independent
RVs, v,w,� U ([0, 1]). The desired radius is then:

r = r0v, w ≤ v;
r0(1 − v), w . v.

{
(4)

In this Letter we propose to combine the RoU and polar RS (i.e. RS
using a sector of a circle, Sp, as the embedding region where we
sample uniformly using polar coordinates) to improve the efficiency in
the generation of some RVs, such as truncated Cauchy and Gaussian.
The algorithm for generating a sample from the target PDF is the
following:

1. Given a target PDF, p0(x) = kp(x) with k . 0, find a sector of a
circle, Sp = {(u, r) : u1 ≤ u ≤ u2, 0 ≤ r ≤ r0}, such that Cp is
embedded inside Sp, i.e. Cp # Sp.
2. Draw a uniform sample pair inside Sp, (u,v), using polar coordinates
as described by (2)–(4).
3. Accept it when (u,v) [ Cp, i.e. 0 ≤ u ≤

�������
p(v/u)

√
. In this case, the

generated sample is x ¼ v/u.
4. Otherwise, discard it and repeat steps 2–4.

Step 1 corresponds to the initialisation (i.e. it is performed only once),
whereas the core of the algorithm (steps 2–4) only requires drawing
three independent uniform RVs per generated sample. The acceptance
rate in this case is GS = |Cp|/|Sp|, with |Sp| indicating the area of Sp.

Results: To show the applicability of the proposed algorithm, consider
the generation of standard Cauchy RVs, x � p(x) = 1/[p(1 + x2)], trun-
cated or not. In this case, for the full Cauchy RV
Cp = {(u, v) : 0 ≤ u2 + v2 ≤ 1} is the half-circle shown in Fig. 1a,
whereas for the truncated Cauchy, x [ [x1, x2], Cp is the sector shown
also in Fig. 1a with r0 = 1, u1 = p/2 − arctan(x1) and
u2 = p/2 − arctan(x2). In both cases the proposed algorithm provides
samples from the exact target PDF without any rejection (i.e. GS ¼ 1).
We remark that the inversion method [5], another popular sampling
technique, can also be used here, but requires evaluating a tangent,
thus leading to a higher computational cost than the proposed algorithm.

As a second example, we address the generation of standard Gaussian

RVs, x � p(x) = 1����
2p

√ exp(−x2/2). For a full Gaussian RV we obtain

the region Cp shown in Fig. 1b, which can be embedded inside a rec-
tangle Rp (with GR ≈ 0.72) or a circle Sp (with GS ≃ 0.65). Although
the acceptance rate of rectangular RS is higher than the one for polar
RS in this case, that is no longer true for truncated Gaussians. Fig. 2
shows the acceptance rate (averaged over 20 000 runs) for different
values of x1 and x2 and five RS algorithms: RS with constant upper
bound (triangle-down marker), RS with a triangular-linear proposal
(diamond marker), RS with a half-Gaussian proposal (triangle-up
marker), RS with a truncated exponential PDF as proposal [8] (rectangu-
lar marker), and our polar RS method (circle marker). Our method pro-
vides the best acceptance rate when 0 , x1 , 1 and x2 ≥ 3 (Fig. 2b),
and the second best for x1 . 1 (Fig. 2a), only surpassed by the
method from [8], which has a higher complexity. Note also that the
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first two approaches cannot be applied inside an infinite domain (i.e.
when x1 � −1 or x2 � −1), whereas our approach is always feasible,
regardless of the values of x1 and x2. Finally, we remark that the inverse
cumulative function of a Gaussian is not known analytically. Hence, the
commonly used inversion method [5] can only be applied approxi-
mately, whereas our method always provides samples from the exact
target PDF.
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Fig. 2 Acceptance rates with different sampling methods

a x1 ¼ 1, x2 variable
b x1 ¼ 0.5, x2 variable

Conclusions: An efficient algorithm for drawing samples from arbitrary
univariate distributions based on the ratio of uniforms and a novel polar
rejection sampling technique has been proposed. Its applicability and
good performance has been demonstrated in the generation of full and
truncated Cauchy and Gaussian RVs with the exact PDF and higher
acceptance rates than other proposed methods. Adaptive versions of
this method and extensions to multivariate PDFs can be easily
implemented.
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L. Martino (Dep. Teoría de Señal y Comunicaciones, Univ. Carlos III de
Madrid, Av. Universidad 30, Leganés 28911, Spain)

References
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