Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica Lecture 2

Alberto Olivares

Departamento de Teoría de la Señal y Comunicaciones Universidad Rey Juan Carlos

26 de octubre de 2017

About Vector Multiplication

Dot and Cross Product

- When we introduced the arithmetic operations, Why the product of two vectors was not defined?
- Vector multiplication could be defined in a manner analogous to the vector addition

By componentwise multiplication

- However, such a definition is not very useful in our context
- Instead, we shall define and use two different concepts of a product of two vectors:
- The Euclidean inner product, or dot product, defined for two vectors in \mathbb{R}^{n} (where n is arbitrary)
- The cross or vector product, defined only for vectors in \mathbb{R}^{3}

The Dot Product of Two Vectors: Algebraic Construction

Definition 3.1

- Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be two vectors
- The dot (or inner or scalar) product of \mathbf{a} and \mathbf{b} is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Dot product takes two vectors and produces a single real number (not a vector)

Example 1

In \mathbb{R}^{3} we have

$$
\begin{aligned}
(1,-2,5) \cdot(2,1,3) & =(1)(2)+(-2)(1)+(5)(3)=15 \\
(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \cdot(\mathbf{i}-2 \mathbf{k}) & =(3)(1)+(2)(0)+(-1)(-2)=5
\end{aligned}
$$

The Dot Product of Two Vectors: Algebraic Construction

Properties of Dot Products

If \mathbf{a}, \mathbf{b} and \mathbf{c} are any vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}), and $k \in \mathbb{R}$ is any scalar

1. $\mathbf{a} \cdot \mathbf{a} \geq 0$, and $\mathbf{a} \cdot \mathbf{a}=0$ if and only if $\mathbf{a}=\mathbf{0}$
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$ commutativity
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$ distributivity
4. $(k \mathbf{a}) \cdot \mathbf{b}=k(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(k \mathbf{b})$

The Dot Product of Two Vectors: Geometric Interpretation

Definition 3.2

- If $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ then the length of \mathbf{a} (also called the norm or magnitude) is

$$
\|\mathbf{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

- Using the distance formula, the length of the arrow from the origin to $\left(a_{1}, a_{2}, a_{3}\right)$ is

$$
\sqrt{\left(a_{1}-0\right)^{2}+\left(a_{2}-0\right)^{2}+\left(a_{3}-0\right)^{2}}
$$

- On the other hand

$$
\mathbf{a} \cdot \mathbf{a}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}
$$

- Thus

$$
\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2} \text { or }\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}
$$

The Dot Product of Two Vectors: Geometric Interpretation

Theorem 3.3

- Let \mathbf{a} and \mathbf{b} are two nonzero vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) drawn with their tails at the same point
- Let θ, where $0 \leq \theta \leq \pi$, be the angle between \mathbf{a} and \mathbf{b}

- Then

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

Note

- If either \mathbf{a} or \mathbf{b} is the zero vector, then θ is indeterminate (i.e., can be any angle)

Angles Between Vectors

Corollary of Theorem 3.3

- Theorem 3.3 may be used to find the angle between two nonzero vectors \mathbf{a} and \mathbf{b}

$$
\theta=\cos ^{-1} \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}
$$

- The use of the inverse cosine is unambiguous, since we take $0 \leq \theta \leq \pi$

Angles Between Vectors

Example 2

- If $\mathbf{a}=\mathbf{i}+\mathbf{j}$ and $\mathbf{b}=\mathbf{j}-\mathbf{k}$, then formula gives

$$
\theta=\cos ^{-1} \frac{(\mathbf{i}+\mathbf{j}) \cdot(\mathbf{j}-\mathbf{k})}{\|\mathbf{i}+\mathbf{j}\|\|\mathbf{j}-\mathbf{k}\|}=\cos ^{-1} \frac{1}{(\sqrt{2} \cdot \sqrt{2})}=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3}
$$

Angles Between Vectors

Orthogonality

- If \mathbf{a} and \mathbf{b} are nonzero, then Theorem 3.3 implies

$$
\cos \theta=0 \text { if and only if } \mathbf{a} \cdot \mathbf{b}=0
$$

- We have $\cos \theta=0$ just in case $\theta=\frac{\pi}{2}$

$$
\text { Remember that } 0 \leq \theta \leq \pi
$$

- We call a and berpendicular (or orthogonal) when $\mathbf{a} \cdot \mathbf{b}=0$
- If either \mathbf{a} or \mathbf{b} is the zero vector, the angle θ is undefined
- Since $\mathbf{a} \cdot \mathbf{b}=0$ if \mathbf{a} or \mathbf{b} is $\mathbf{0}$, we adopt the standard convention

The zero vector

Angles Between Vectors

Example 3

- The vector $\mathbf{a}=\mathbf{i}+\mathbf{j}$ is orthogonal to the vector $\mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}$

$$
(\mathbf{i}+\mathbf{j}) \cdot(\mathbf{i}-\mathbf{j}+\mathbf{k})=(1)(1)+(1)(-1)+(0)(1)=0
$$

Vector Projections

Motivation example

- Suppose that a 2 kg object is sliding down a ramp
- The ramp has a 30° incline with the horizontal

- If we neglect friction, the only force acting on the object is gravity

What is the component of the gravitational force in the direction of motion of the object?

- To answer questions of this nature, we need to find the projection of one vector on another

Vector Projections

Projection of one vector on another: intuitive idea

- Let \mathbf{a} and \mathbf{b} be two nonzero vectors
- Imagine dropping a perpendicular line from the head of \mathbf{b} to the line through a

- The projection of \mathbf{b} onto \mathbf{a}, denoted $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$, is the vector represented by the arrow in figure

Vector Projections

Projection of one vector on another: precise formula

- Recall that

A vector is determined by magnitude (length) and direction

- The direction of $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is either
- The same as that of a or
- Opposite to a if the angle θ between \mathbf{a} and \mathbf{b} is more than $\frac{\pi}{2}$
- Using trigonometry

$$
|\cos \theta|=\frac{\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right\|}{\|\mathbf{b}\|}
$$

- The absolute value sign around $\cos \theta$ is needed in case

$$
\frac{\pi}{2} \leq \theta \leq \pi
$$

Vector Projections

Projection of one vector on another: precise formula

- Since

$$
|\cos \theta|=\frac{\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right\|}{\|\mathbf{b}\|}
$$

- Hence, with a bit of algebra and Theorem 3.3, we have

$$
\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right\|=\|\mathbf{b}\||\cos \theta|=\frac{\|\mathbf{a}\|\|\mathbf{b}\||\cos \theta|}{\|\mathbf{a}\|}=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}
$$

Thus, we know the magnitude and direction of $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$

Vector Projections

Proposition 3.4

- Let k be any scalar and a any vector
- Then

1. $\|k \mathbf{a}\|=|k| \| \mathbf{a} \mid$
2. A unit vector (i.e., a vector of length 1) in the direction of a nonzero vector a is given by

$$
\frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

This provides a compact formula for $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$

Vector Projections

Compact formula for $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{a}} \mathbf{b} & = \pm\left(\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}\right) \times \frac{\mathbf{a}}{\|\mathbf{a}\|}= \pm \frac{\|\mathbf{a}\|\|\mathbf{b}\||\cos \theta|}{\|\mathbf{a}\|} \frac{\mathbf{a}}{\|\mathbf{a}\|} \\
& =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}
\end{aligned}
$$

Vector Projections

Example 4

- Suppose that a 2 kg object is sliding down a ramp
- The ramp has a 30° incline with the horizontal

- If we neglect friction, the only force acting on the object is gravity

What is the component of the gravitational force in the direction of motion of the object?

Vector Projections

Example 4

- We need to calculate $\operatorname{proj}_{\mathbf{a}} \mathbf{F}$
- \mathbf{F} is the gravitational force vector
- a points along the ramp as shown in figure

Vector Projections

Example 4

- The coordinate situation is shown in figure

- From trigonometric considerations, we must have $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ such that

$$
a_{1}=-\|\mathbf{a}\| \cos 30^{\circ} \text { and } a_{2}=-\|\mathbf{a}\| \sin 30^{\circ}
$$

Vector Projections

Example 4

- We are really only interested in the direction of a
- There is no loss in assuming that \mathbf{a} is a unit vector
- Thus

$$
\mathbf{a}=-\cos 30^{\circ} \mathbf{i}-\sin 30^{\circ} \mathbf{j}=-\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}
$$

Vector Projections

Example 4

- Taking $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$, we have $\mathbf{F}=-2 g \mathbf{j}=-19.6 \mathbf{j}$
- Therefore

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{F}=\left(\frac{\mathbf{a} \cdot \mathbf{F}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\frac{\left(-\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}\right) \cdot(-19.6 \mathbf{j})}{1}\left(-\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}\right)
$$

Vector Projections

Example 4

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{a}} \mathbf{F} & =\left(\frac{\mathbf{a} \cdot \mathbf{F}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\frac{\left(-\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}\right) \cdot(-19.6 \mathbf{j})}{1}\left(-\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}\right) \\
& =9.8\left(-\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}\right) \approx-8.49 \mathbf{i}-4.9 \mathbf{j}
\end{aligned}
$$

- And the component of \mathbf{F} in this direction is

$$
\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{F}\right\|=\|-8.49 \mathbf{i}-4.9 \mathbf{j}\|=9.8 \mathrm{~N}
$$

Vector Projections

Normalization of a vector

- Unit vectors, that is, vectors of length 1 , are important in that they capture the idea of direction

They all have the same length

- Proposition 3.4 shows that every nonzero vector a can have its length adjusted to give a unit vector

$$
\mathbf{u}=\frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

- u points in the same direction as a
- This operation is referred to as normalization of the vector a

Vector Projections

Example 5

- A fluid is flowing across a plane surface with uniform velocity vector v
- Let \mathbf{n} be a unit vector perpendicular to the plane surface

- Find (in terms of \mathbf{v} and \mathbf{n}) the volume of the fluid that passes through a unit area of the plane in unit time

Vector Projections

Example 5

- Suppose one unit of time has elapsed
- Then, over a unit area of the plane (a unit square), the fluid will have filled a "box" as in figure

- The box may be represented by a parallelepiped
- The volume we seek is the volume of this parallelepiped

Vector Projections

Example 5

- The volume of this parallelepiped is

$$
\text { Volume }=(\text { area of base })(\text { height })
$$

- The area of the base is 1 unit by construction
- The height is given by $\operatorname{proj}_{\mathbf{n}} \mathbf{v}$
- Since $\mathbf{n} \cdot \mathbf{n}=\|\mathbf{n}\|^{2}=1$

$$
\operatorname{proj}_{\mathbf{n}} \mathbf{v}=\left(\frac{\mathbf{n} \cdot \mathbf{v}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n}=(\mathbf{n} \cdot \mathbf{v}) \mathbf{n}
$$

- Hence

$$
\left\|\operatorname{proj}_{\mathbf{n}} \mathbf{v}\right\|=\|(\mathbf{n} \cdot \mathbf{v}) \mathbf{n}\|=|\mathbf{n} \cdot \mathbf{v}\|\mathbf{n}\|=|\mathbf{n} \cdot \mathbf{v}|
$$

The Cross Product of Two Vectors

Motivation

- The cross product of two vectors in \mathbb{R}^{3} is an "honest" product
it takes two vectors and produces a third one
- However, the cross product possesses less "natural" properties

> it cannot be defined for vectors in \mathbb{R}^{2} without first embedding them in \mathbb{R}^{3}

- We will define the cross product first geometrically, and then deduce an algebraic formula

The Cross Product of Two Vectors in \mathbb{R}^{3}

Definition 4.1

- Let \mathbf{a} and \mathbf{b} be two vectors in \mathbb{R}^{3} (not \mathbb{R}^{2})
- The cross product (or vector product) of \mathbf{a} and \mathbf{b}, denoted $\mathbf{a} \times \mathbf{b}$, is the vector whose length and direction are given as follows
- The length of $\mathbf{a} \times \mathbf{b}$ is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b} or is zero if either \mathbf{a} is parallel to \mathbf{b} or if \mathbf{a} or \mathbf{b} is $\mathbf{0}$
- Alternatively, the following formula holds

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

where θ is the angle between \mathbf{a} and \mathbf{b}

The Cross Product of Two Vectors in \mathbb{R}^{3}

Definition 4.1

- The area of this parallelogram is
$\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$

The Cross Product of Two Vectors in \mathbb{R}^{3}

Definition 4.1

- The direction of $\mathbf{a} \times \mathbf{b}$ is such that $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b} (when both \mathbf{a} and \mathbf{b} are nonzero)
- It is taken so that the ordered triple $(\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b})$ is a right-handed set of vectors

- If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, or if \mathbf{a} is parallel to \mathbf{b}, then $\mathbf{a} \times \mathbf{b}=\mathbf{0}$

The Cross Product of Two Vectors in \mathbb{R}^{3}

Example 1

- Compute the cross product of the standard basis vectors for \mathbb{R}^{3}
- First consider $\mathbf{i} \times \mathbf{j}$ as shown in figure

- The vectors \mathbf{i} and \mathbf{j} determine a square of unit area

The Cross Product of Two Vectors in \mathbb{R}^{3}

Example 1

- Compute the cross product of the standard basis vectors for \mathbb{R}^{3}
- The vectors \mathbf{i} and \mathbf{j} determine a square of unit area
- Thus

$$
\|\mathbf{i} \times \mathbf{j}\|=1
$$

- Any vector perpendicular to both \mathbf{i} and \mathbf{j} must be perpendicular to the plane in which \mathbf{i} and \mathbf{j} lie
- Hence, $\mathbf{i} \times \mathbf{j}$ must point in the direction of $\pm k$
- The right-hand rule implies that $\mathbf{i} \times \mathbf{j}$ must point in the positive k direction
- Since $\|\mathbf{k}\|=1$, we conclude that

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}
$$

The Cross Product of Two Vectors in \mathbb{R}^{3}

Example 1

- Compute the cross product of the standard basis vectors for \mathbb{R}^{3}
- The same argument establishes that $\mathbf{j} \times \mathbf{k}=\mathbf{i}$ and $\mathbf{k} \times \mathbf{i}=\mathbf{j}$
- To remember these basic equations, draw \mathbf{i}, \mathbf{j} and \mathbf{k} in a circle

Properties of the Cross Product; Coordinate Formula

Properties of the Cross Product

- Let \mathbf{a}, \mathbf{b} and \mathbf{c} be vectors in \mathbb{R}^{3} and let $k \in \mathbb{R}$ be any scalar
- Then

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$ (anticommutativity)
2. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$ (distributivity)
3. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$ (distributivity)
4. $k(\mathbf{a} \times \mathbf{b})=(k \mathbf{a}) \times \mathbf{b}=\mathbf{a} \times(k \mathbf{b})$

Properties of the Cross Product; Coordinate Formula

Properties the Cross Product Does Not Fulfil

- Let \mathbf{a}, \mathbf{b} and \mathbf{c} be vectors in \mathbb{R}^{3} and let $k \in \mathbb{R}$ be any scalar
- In general, the cross product is not commutative

$$
\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}
$$

- In general, the cross product does not fulfil associativity

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}
$$

Example

Let $\mathbf{a}=\mathbf{b}=\mathbf{i}$ and $\mathbf{c}=\mathbf{j}$

$$
\begin{gathered}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{k} \times \mathbf{i}=-\mathbf{j} \\
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=\mathbf{0} \times \mathbf{j}=\mathbf{0}
\end{gathered}
$$

Properties of the Cross Product; Coordinate Formula

Coordinate formula for the cross product

- Let $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$
- Then

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right) \\
& =\cdots \\
& =-a_{2} b_{1} \mathbf{k}+a_{3} b_{1} \mathbf{j}+a_{1} b_{2} \mathbf{k}-a_{3} b_{2} \mathbf{i}-a_{1} b_{3} \mathbf{j}+a_{2} b_{3} \mathbf{i} \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

- There is a more elegant way to understand this formula

We explore this reformulation next

Properties of the Cross Product; Coordinate Formula

Coordinate formula for the cross product

$$
\mathbf{a} \times \mathbf{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
$$

Example 2

$$
\begin{aligned}
(\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}) \times(2 \mathbf{i}+2 \mathbf{k}) & =(3 \cdot 2-(-2) \cdot 0) \mathbf{i}+(-2 \cdot 2-1 \cdot 2) \mathbf{j} \\
& +(1 \cdot 0-3 \cdot 2) \mathbf{k}=6 \mathbf{i}-6 \mathbf{j}-6 \mathbf{k}
\end{aligned}
$$

Matrices and Determinants: A First Introduction

Matrices

- A matrix is a rectangular array of numbers
- Examples of matrices are

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right],\left[\begin{array}{ll}
1 & 3 \\
2 & 7 \\
0 & 0
\end{array}\right] \text {, and }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- If a matrix has m rows and n columns, we call it $m \times n$
- Thus, the three matrices just mentioned are, respectively, $2 \times 3,3 \times 2$ and 4×4
- To some extent, matrices behave algebraically like vectors
- Mainly interesting is the the notion of a determinant
- It is a real number associated to an $m \times n$ square matrix

Matrices and Determinants: A First Introduction

Definition 4.2: Determinants

- Let A be a 2×2 or 3×3 matrix
- Then the determinant of A, denoted det A or $|A|$, is the real number computed from the individual entries of A as follows:

1. 2×2 case

If

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],
$$

then

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Matrices and Determinants: A First Introduction

Definition 4.2: Determinants

- Let A be a 2×2 or 3×3 matrix
- Then the determinant of A, denoted det A or $|A|$, is the real number computed from the individual entries of A as follows:

2. 3×3 case

If

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

then

$$
|A|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a e i+b f g+c d h-c e g-a f h-b d i
$$

Matrices and Determinants: A First Introduction

Definition 4.2: Determinants

- Let A be a 2×2 or 3×3 matrix
- Then the determinant of A, denoted det A or $|A|$, is the real number computed from the individual entries of A as follows:

3. 3×3 case in terms of 2×2 determinants

If

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

then

$$
|A|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

Matrices and Determinants: A First Introduction

Diagonal Approach for 2×2 and 3×3 Determinants

- We write (or imagine) diagonal lines running through the matrix entries

It is not valid for higher-order determinants

1. 2×2 case

$$
A=\left[\begin{array}{ll}
a & b \\
e & d
\end{array}\right]
$$

$$
|A|=a d-b c
$$

Matrices and Determinants: A First Introduction

Diagonal Approach for 2×2 and 3×3 Determinants

2. 3×3 case

We need to repeat the first two columns for the method to work

$$
|A|=a e i+b f g+c d h-c e g-a f h-b d i
$$

Matrices and Determinants: A First Introduction

Connection Between Determinants and Cross Products - If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Example 3

$$
\begin{aligned}
(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \times(\mathbf{i}-\mathbf{j}+\mathbf{k}) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 2 & -1 \\
1 & -1 & 1
\end{array}\right| \\
& =\left|\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
3 & 2 \\
1 & -1
\end{array}\right| \mathbf{k} \\
& =\mathbf{i}-4 \mathbf{j}-5 \mathbf{k}
\end{aligned}
$$

Areas and Volumes

Example 4

Use vectors to calculate the area of the triangle whose vertices are $A(3,1), B(2,-1)$, and $C(0,2)$ as shown in figure

Areas and Volumes

Example 4

- The trick is to recognize that any triangle can be thought of as half of a parallelogram

- Now, the area of a parallelogram is obtained from a cross product

Areas and Volumes

Example 4

- $\overrightarrow{A B} \times \overrightarrow{A C}$ is a vector whose length measures the area of the parallelogram determined by $\overrightarrow{A B}$ and $\overrightarrow{A C}$

$$
\text { Area of } \nabla A B C=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|
$$

Areas and Volumes

Example 4

- To use the cross product, we must consider $\overrightarrow{A B}, \overrightarrow{A C} \in \mathbb{R}^{3}$
- We simply take the k-components to be zero

$$
\begin{aligned}
& \overrightarrow{A B}=-\mathbf{i}-2 \mathbf{j}=-\mathbf{i}-2 \mathbf{j}-0 \mathbf{k} \\
& \overrightarrow{A C}=-3 \mathbf{i}+\mathbf{j}=-3 \mathbf{i}+\mathbf{j}+0 \mathbf{k}
\end{aligned}
$$

- Therefore

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & -2 & 0 \\
-3 & 1 & 0
\end{array}\right|=-7 \mathbf{k}
$$

Area of $\nabla A B C=\frac{1}{2}\|-7 \mathbf{k}\|=\frac{7}{2}$

Areas and Volumes

Example 4

- There is nothing sacred about using A as the common vertex
- We could just as easily have used B or C, as shown in figure

$$
\text { Area of } \begin{aligned}
\nabla A B C & =\frac{1}{2}\|\overrightarrow{B A} \times \overrightarrow{B C}\|=\frac{1}{2}\|(\mathbf{i}+2 \mathbf{j}) \times(-2 \mathbf{i}+3 \mathbf{j})\| \\
& =\frac{1}{2}\|7 \mathbf{k}\|=\frac{7}{2}
\end{aligned}
$$

Areas and Volumes

Example 5

Find a formula for the volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}

Areas and Volumes

Example 5

- The volume of a parallelepiped is equal to the product of the area of the base and the height
- The base is the parallelogram determined by \mathbf{a} and \mathbf{b}
- Its area is $\|\mathbf{a} \times \mathbf{b}\|$

Areas and Volumes

Example 5

- The vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to this parallelogram
- The height of the parallelepiped is $\|\mathbf{c}\||\cos \theta|$
- θ is the angle between $\mathbf{a} \times \mathbf{b}$ and \mathbf{c}

The absolute value is needed in case $\theta>\frac{\pi}{2}$

Areas and Volumes

Example 5

Volume of parallelepiped $=$ (area of base)(height)

$$
=\|\mathbf{a} \times \mathbf{b}\|\|\mathbf{c}\||\cos \theta|=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|
$$

Areas and Volumes

Example 5

$$
\begin{aligned}
& \text { Volume of parallelepiped }=(\text { area of base }) \text { (height) } \\
& =\|\mathbf{a} \times \mathbf{b}\|\|\mathbf{c}\||\cos \theta|=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|
\end{aligned}
$$

For example, the parallelepiped determined by the vectors

$$
\mathbf{a}=\mathbf{i}+5 \mathbf{j}, \quad \mathbf{b}=-4 \mathbf{i}+2 \mathbf{j} \text { and } \mathbf{c}=\mathbf{i}+\mathbf{j}+6 \mathbf{k}
$$

Volume of parallelepiped $=|((\mathbf{i}+5 \mathbf{j}) \times(-4 \mathbf{i}+2 \mathbf{j})) \cdot(\mathbf{i}+\mathbf{j}+6 \mathbf{k})|$

$$
=|22 \mathbf{k} \cdot(\mathbf{i}+\mathbf{j}+6 \mathbf{k})|=|22(6)|=132
$$

Areas and Volumes

Triple Scalar Product

- The real number $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ appearing in Example 5 is known as the triple scalar product of the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}
- Since $|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|$ represents the volume of the parallelepiped determined by \mathbf{a}, \mathbf{b}, and \mathbf{c}

$$
|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|=|(\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}|=|(\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}|
$$

- In fact, the absolute value signs are not needed

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=(\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}=(\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}
$$

Areas and Volumes

Triple Scalar Product

- There is a convenient formula for calculating triple scalar products
- If

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} \text { and } \mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}
$$

- Then

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Torque

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- You apply some force to the end of the wrench handle farthest from the bolt
- The bolt move in a direction perpendicular to the plane determined by the handle and the direction of your force

Torque

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- To measure exactly how much the bolt moves, we need the notion of torque (or twisting force)
- Letting F denote the force you apply to the wrench

Amount of torque $=($ length of wrench $)($ component of $F \perp$ wrench $)$

Torque

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- Let \mathbf{r} be the vector from the center of the bolt head to the end of the wrench handle
- Then

Amount of torque $=\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta$
where θ is the angle between \mathbf{r} and \mathbf{F}

Torque

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- That is, the amount of torque is

$$
\|\mathbf{r} \times \mathbf{F}\|
$$

- And the direction of $\mathbf{r} \times \mathbf{F}$ is the same as the direction in which the bolt moves

Torque

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- Hence, it is quite natural to define the torque vector \mathbf{T} to be

$$
\mathbf{T}=\mathbf{r} \times \mathbf{F}
$$

- This torque vector \mathbf{T} is a concise way to capture the physics of this situation

Torque

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- Note that if \mathbf{F} is parallel to \mathbf{r}, then $\mathbf{T}=\mathbf{0}$ If you try to push or pull the wrench, the bolt does not turn

Rotation of a Rigid Body

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

What is the relation between the (linear) velocity of a point of the object and the rotational velocity?

Rotation of a Rigid Body

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- First, we need to define a vector ω, the angular velocity vector of the rotation
- This vector points along the axis of rotation, and its direction is determined by the right-hand rule

Rotation of a Rigid Body

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- The magnitude of ω is the angular speed (measured in radians per unit time) at which the object spins
- Assume that the angular speed is constant in this discussion

Rotation of a Rigid Body

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- Fix a point O (the origin) on the axis of rotation
- Let $\mathbf{r}(t)=\overrightarrow{O P}$ be the position vector of a point P of the body, measured as a function of time

Rotation of a Rigid Body

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- The velocity \mathbf{v} of P is defined by

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}
$$

Rotation of a Rigid Body

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- $\Delta \mathbf{r}=\mathbf{r}(t+\Delta t)-\mathbf{r}(t)$

The vector change in position between times t and $t+\Delta t$

- Our goal is to relate \mathbf{v} and ω

Rotation of a Rigid Body

Spinning an object about an axis

- As the body rotates, the point P (at the tip of the vector \mathbf{r}) moves in a circle whose plane is perpendicular to ω
- The radius of this circle is

$$
\|\mathbf{r}(t)\| \sin \theta
$$

where θ is the angle between ω and \mathbf{r}

Rotation of a Rigid Body

Spinning an object about an axis

- Both $\|\mathbf{r}(t)\|$ and θ must be constant for this rotation

The direction of $\mathbf{r}(t)$ may change with t, however

Rotation of a Rigid Body

Spinning an object about an axis

- If $t \approx 0$, then $\|\Delta \mathbf{r}\|$ is approximately the length of the circular arc swept by P between t and $t+\Delta t$
- That is,
$\|\Delta \mathbf{r}\| \approx \quad($ radius of circle) $($ angle swept through by $P)$

$$
=(\|\mathbf{r}\| \sin \theta)(\Delta \phi)
$$

Rotation of a Rigid Body

Spinning an object about an axis

- Thus

$$
\left\|\frac{\Delta \mathbf{r}}{\Delta t}\right\| \approx\|\mathbf{r}\| \sin \theta \frac{\Delta \phi}{\Delta t}
$$

Rotation of a Rigid Body

Spinning an object about an axis

- Now, let $\Delta t \rightarrow 0$
- Then $\frac{\Delta r}{\Delta t} \rightarrow \mathbf{v}$ and $\frac{\Delta \phi}{\Delta t} \rightarrow\|\omega\|$ by definition of the angular velocity vector ω
- Thus, we have

$$
\|\mathbf{v}\|=\|\omega\|\|\mathbf{r}\| \sin \theta=\|\omega \times \mathbf{r}\|
$$

Rotation of a Rigid Body

Spinning an object about an axis

$$
\|\mathbf{v}\|=\|\omega\|\|\mathbf{r}\| \sin \theta=\|\omega \times \mathbf{r}\|
$$

- It's not difficult to see intuitively that \mathbf{v} must be perpendicular to both ω and \mathbf{r}
- Right-hand rule should enable you to establish the vector equation

$$
\mathbf{v}=\omega \times \mathbf{r}
$$

Rotation of a Rigid Body

Spinning an object about an axis

- Apply to a bicycle wheel formula

$$
\|\mathbf{v}\|=\|\omega\|\|\mathbf{r}\| \sin \theta=\|\omega \times \mathbf{r}\|
$$

- It tells us that the speed of a point on the edge of the wheel is equal to the product of
- The radius of the wheel, and
- The angular speed

$$
\theta \text { is } \frac{\pi}{2} \text { in this case }
$$

- If the rate of rotation is kept constant, a point on the rim of a large wheel goes faster than a point on the rim of a small one

Rotation of a Rigid Body

Spinning an object about an axis

- In the case of a carousel wheel, this result tells you to sit on an outside horse if you want a more exciting ride

Summary of Products Involving Vectors

Scalar Multiplication: ka

- Result is a vector in the direction of a
- Magnitude is $\|k \mathbf{a}\|=|k|\|\mathbf{a}\|$
- Zero if $k=0$ or $\mathbf{a}=\mathbf{0}$
- Commutative: $k \mathbf{a}=\mathbf{a} k$
- Associative: $k(/ \mathbf{a})=(k /) \mathbf{a}$
- Distributive: $k(\mathbf{a}+\mathbf{b})=k \mathbf{a}+k \mathbf{b}$ and $(k+l) \mathbf{a}=k \mathbf{a}+l \mathbf{a}$

Summary of Products Involving Vectors

Dot Product: a • b

- Result is a scalar
- Magnitude is $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta ; \theta$ is the angle between \mathbf{a} and \mathbf{b}
- Magnitude is maximized if $\mathbf{a} \| \mathbf{b}$
- Zero if $\mathbf{a} \perp \mathbf{b}, \mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$
- Commutative: $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
- Associativity is irrelevant, since (a $\cdot \mathbf{b}) \cdot \mathbf{c}$ doesn't make sense
- Distributive: $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
- If $\mathbf{a}=\mathbf{b}$ then $\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2}$

Summary of Products Involving Vectors

Cross Product: $\mathbf{a} \times \mathbf{b}$

- Result is a vector perpendicular to both \mathbf{a} and \mathbf{b}
- Magnitude is $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$; θ is the angle between \mathbf{a} and \mathbf{b}
- Magnitude is maximized if $\mathbf{a} \perp \mathbf{b}$
- Zero if $\mathbf{a} \| \mathbf{b}, \mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$
- Anticommutative: $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
- Not associative: In general $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
- Distributive: $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$ and $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
- If $\mathbf{a} \perp \mathbf{b}$ then $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\|$

