## Introducción a las señales en el dominio del tiempo

- 1. Señales: Definición y clasificación.
- Transformaciones de la variable independiente y propiedades de las señales.
- Estudio de señales básicas.



### 1. Señales. Definición y clasificación

"Función de una o más variables independientes que contenga información acerca de la naturaleza o comportamiento de algún fenómeno"

### Ejemplos:

- Cambios de presión, sonido
- Posición de la membrana de un altavoz
- Diferencia de tensión en un piezoeléctrico de un altavoz
- Posición o velocidad de cualquier móvil (coche, avión, ...)
- Tensión o corriente en elementos o ramas de un circuito
- Intensidad en escala de grises de una foto B/N
- Intensidad de RGB en una imagen a color

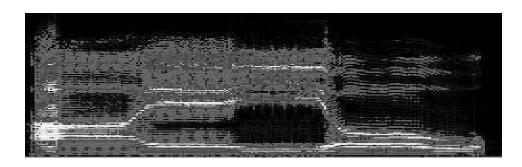
#### Clasificación:

- Funciones de una sola variable (por defecto, el tiempo) o de varias variables (imagen, temperaturas,...).
- Funciones unidimensionales (tensión, corriente,...) o de varias dimensiones (posición, velocidad,...)

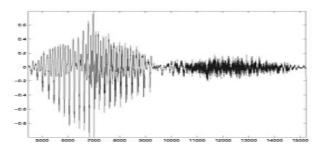


## ¿Qué es una señal? Ejemplos

$$s(t) = 5t$$
$$S(x,y) = 3x + 5xy$$



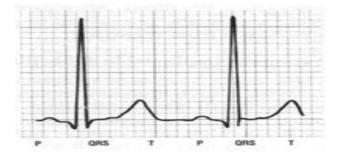
Espectrograma



Señal de voz



Imagen

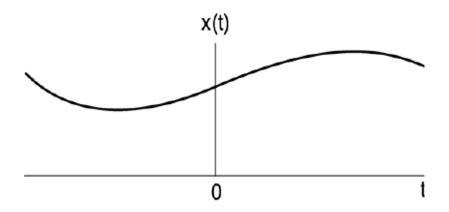


Señal de ECG



### Señales de tiempo continuo

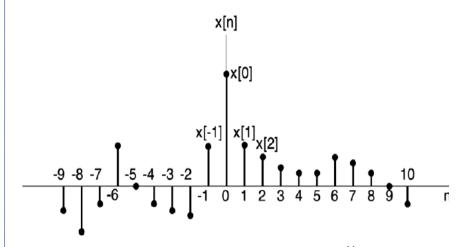
- La variable independiente toma valores reales (carácter continuo)
  - Tensión o corriente en elementos o ramas de circuitos
  - Temperatura o presión en un punto en función del tiempo
- Representación gráfica: curva continua, variable independiente "t", señal x(t)





### Señales de tiempo discreto

- La variable independiente toma valores enteros (carácter discreto)
  - \* Temperatura máxima en los días del año (no existe el día 1.5 ó  $\pi$ )
  - Altura de los alumnos de una clase (no existe el alumno 2.33)
  - El valor de la señal puede ser real: 22.5° C, 1.76 m
- Representación gráfica: variable independiente n, señal x[n],
   amplitud de la señal representada por un círculo y un segmento



La variable independiente puede ser de carácter inherentemente discreta (edad, día del mes,...) o una discretización de una variable continua (medir una tensión cada 10 ms,...)

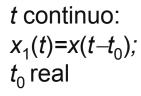


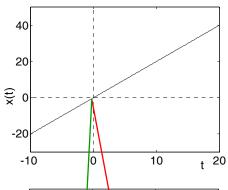
## 2. Transformaciones de la variable independiente y propiedades de la señal

- Transformaciones de la variable independiente:
  - Desplazamiento
  - Reflexión
  - Cambio de escala
- Propiedades:
  - Simetría
  - Periodicidad
  - Causalidad

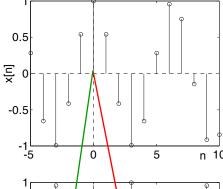


## Desplazamiento

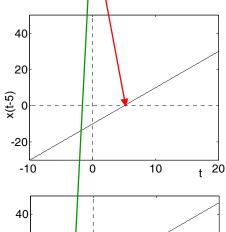




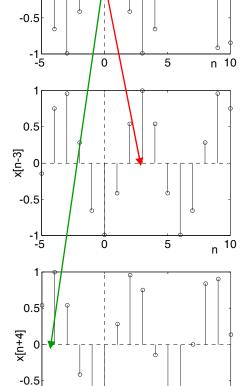
*n* discreto:  $x_1[n] = x[n-n_0];$  $n_0$  entero



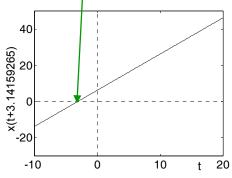
x(t-5): Retardo



x[n-3]: Retardo



 $x(t+\pi)$ : **Adelanto** 

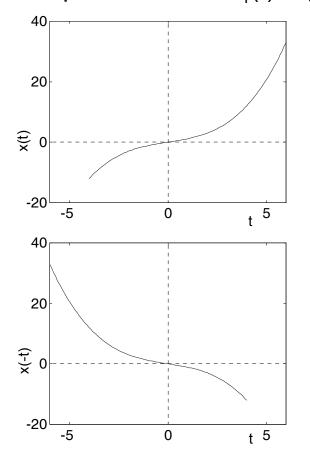


*x*[*n*+4]: **Adelanto** 

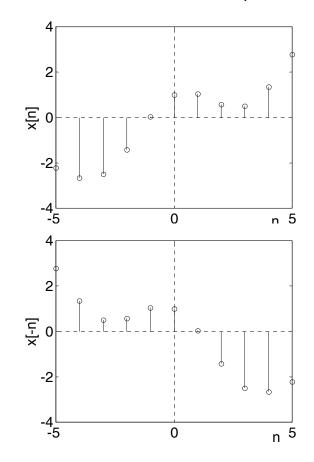


### Reflexión

Tiempo **continuo**:  $x_1(t)=x(-t)$ 



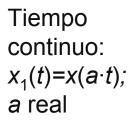
Tiempo **discreto**:  $x_1[n]=x[-n]$ 

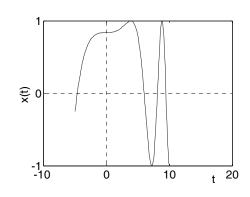


Reflexión especular respecto al eje vertical

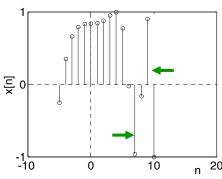


### Cambio de escala

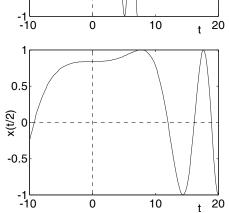




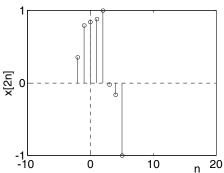
Tiempo discreto:  $x_1[n]=x[a\cdot n];$ a racional



 $x(1.41 \cdot t)$ Compresión

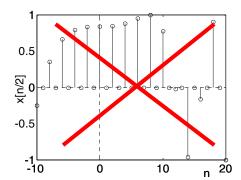


 $x[2\cdot n]$ Compresión. Pérdida de información



x(t/2) 0 x(t/2)**Expansión** 

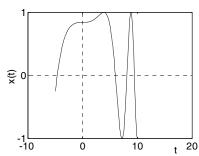
x[n/2]Expansión. Se introduce información



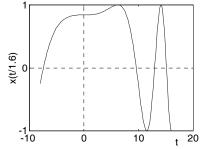


### Combinación de transformaciones

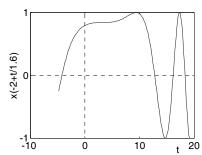
Ejemplo:  $x_1(t) = x(-2+t/1.6)$ 



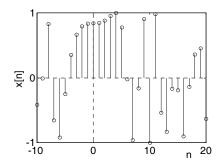
x(t/1.6) Expansión

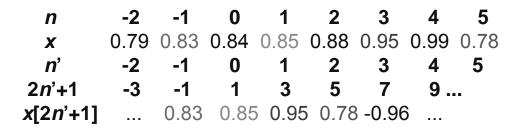


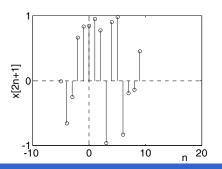
*x*(-2+*t*/1.6) **Retardo** en 2\*1.6



Ejemplo:  $x_1[n] = x[2n+1]$ 









### Transformaciones múltiples

Transformaciones múltiples,

$$g(t) \to Ag\left(\frac{t-t_0}{a}\right)$$

Una transformación múltiple se puede realizar por pasos

$$g(t) \xrightarrow{\text{escalado en amplitud, } A} Ag(t) \xrightarrow{t \to \frac{t}{a}} Ag\left(\frac{t}{a}\right) \xrightarrow{t \to t - t_0} Ag\left(\frac{t - t_0}{a}\right)$$

La secuencia de pasos es significativa

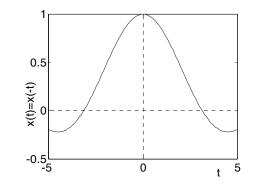
$$g\left(t\right) \xrightarrow{\text{escalado en amplitud, } A} Ag\left(t\right) \xrightarrow{t \to t - t_0} Ag\left(t - t_0\right) \xrightarrow{t \to \frac{t}{a}} Ag\left(\frac{t}{a} - t_0\right) \neq Ag\left(\frac{t - t_0}{a}\right)$$

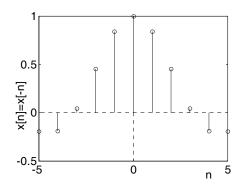


## Simetría (I)

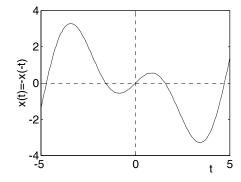
Simplifica el estudio y representación de señales

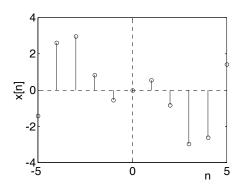
Simetría **par**:  $\begin{cases} x(t)=x(-t) \\ x[n]=x[-n] \end{cases}$ 





Simetría impar:  $\begin{cases} x(t) = -x(-t) & \text{ for } x(n) = -x(-n) \end{cases}$ 



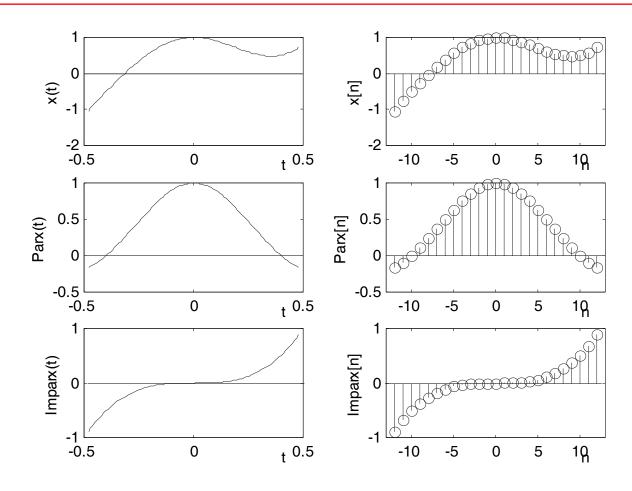




## Simetría (II)

Par{ 
$$x(t)$$
 }={  $x(t)+x(-t)$  } / 2  
Par{  $x[n]$  }={  $x[n]+x[-n]$  } / 2

Impar{ 
$$x(t)$$
 }={  $x(t)-x(-t)$  } / 2  
Impar{  $x[n]$  }={  $x[n]-x[-n]$  } / 2





### Periodicidad

### Simplifica el estudio y representación de señales

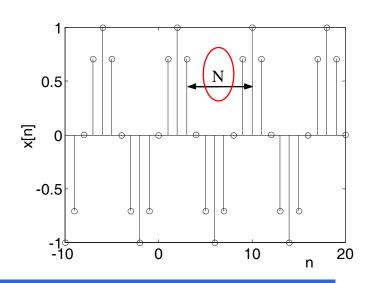
### Tiempo continuo:

- Una señal x(t) es periódica  $\Leftrightarrow$   $\exists T \in \mathcal{R}^+ t.q. \ x(t+T)=x(t), \ \forall t$
- Periodo fundamental T<sub>0</sub>=min{ T }
- Frecuencia fundamental:  $f_0 = 1/T_0$
- Pulsación fundamental:  $\omega_0 = 2\pi f_0$

## 0.5 -0.5 -1.5 0 5 10

### Tiempo discreto:

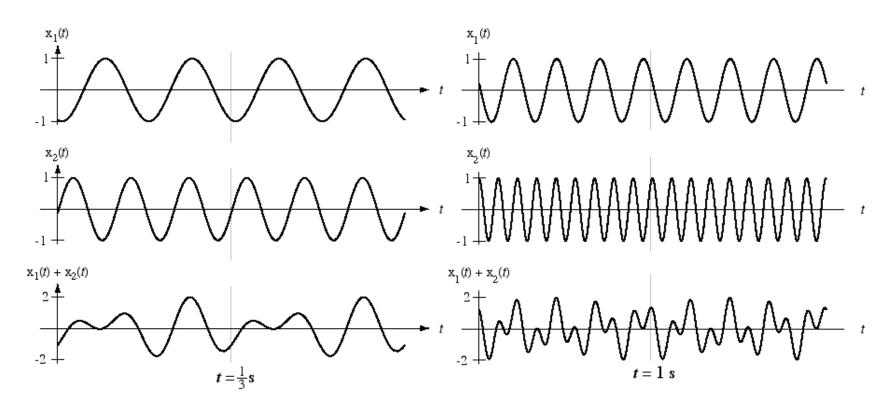
- Una señal x[n] es periódica  $\Leftrightarrow$   $\exists N \in \mathbb{Z}^+ t.q. \ x[n+N]=x[n], \forall n$
- Periodo fundamental N<sub>0</sub>=min{ N }
- Frecuencia fundamental:  $f_0 = 1/N_0$
- Pulsación fundamental:  $\Omega_0$ =2 $\pi f_0$





## Suma de funciones periódicas

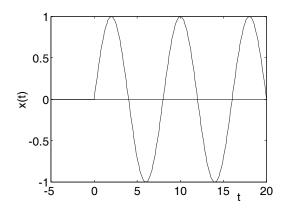
- El periodo de la suma de funciones periódicas es el mínimo común múltiplo (MCM) de los periodos de las funciones individuales que componen la suma
- Si el MCM es infinito, la señal es aperiódica



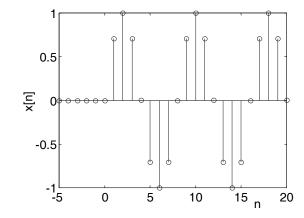


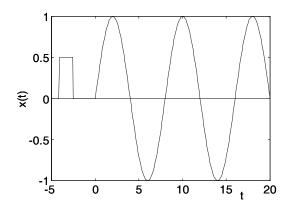
### Causalidad

x(t) es causal  $\Leftrightarrow x(t)=0, \ \forall t < 0$  x[n] es causal  $\Leftrightarrow x[n]=0, \ \forall n < 0$ 

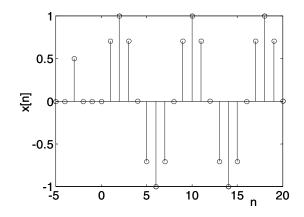


Causal





No causal





### 3. Estudio de señales básicas

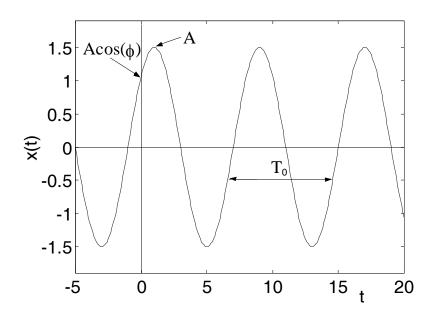
- Señales de tiempo continuo
  - Sinusoidales
  - Exponenciales
    - \* Exponenciales *reales*
    - \* Exponencial imaginaria
    - \* Exponenciales *complejas*
  - Escalón unidad
  - Impulso unidad
- Señales de tiempo discreto
  - Escalón unidad
  - Impulso unidad
  - Exponencial real
  - Sinusoidal
  - Exponencial compleja



### Señales sinusoidales

$$x(t) = A \cdot \cos(\omega t + \phi)$$

- Amplitud: A
- Periódica
- Periodo fundamental  $T_0 = 2\pi/|\omega|$
- Frecuencia fundamental  $f_0$ =1/ $T_0$
- Pulsación fundamental |ω|
- No causal
- Simetría par si φ=0
- Simetría impar si  $\phi$ = $\pi$ /2





## Señales exponenciales (I)

- Señales exponenciales:  $x(t)=A \cdot e^{(at+j\beta)}$ 
  - A es un número real positivo,
  - \* a es complejo y
  - $*\beta$  es un número **real**
- Podemos distinguir entre:
  - i) a real (Im{a}=0)
  - ii) a imaginario puro (Re{a}=0)
  - $\bullet$  iii) a complejo (Re{a}  $\neq 0 \neq \text{Im}{a}$ )

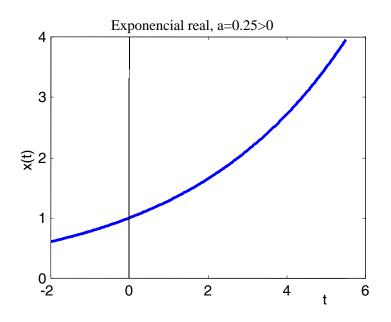


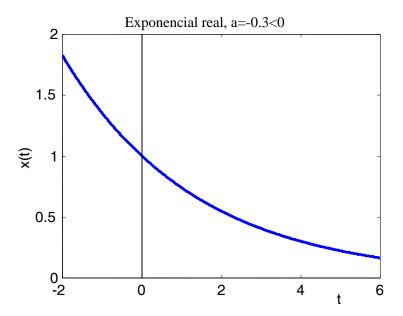
## Señales exponenciales (II)

**Exponencial real** ( $\beta = 0$  por simplicidad):

$$x(t)=A \cdot e^{a \cdot t}$$
;

A sólo modifica la altura



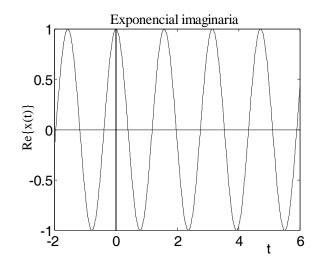


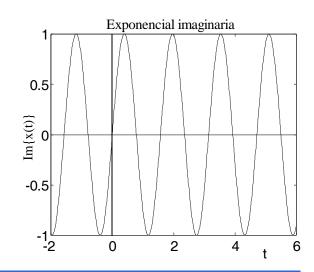


### Señales exponenciales (III)

Exponencial imaginaria pura  $a=j\omega$  ( $\beta=0$  por simplicidad)  $x(t)=Ae^{j\omega t}=A\cdot\cos(\omega t)+jA\cdot\sin(\omega t)$ 

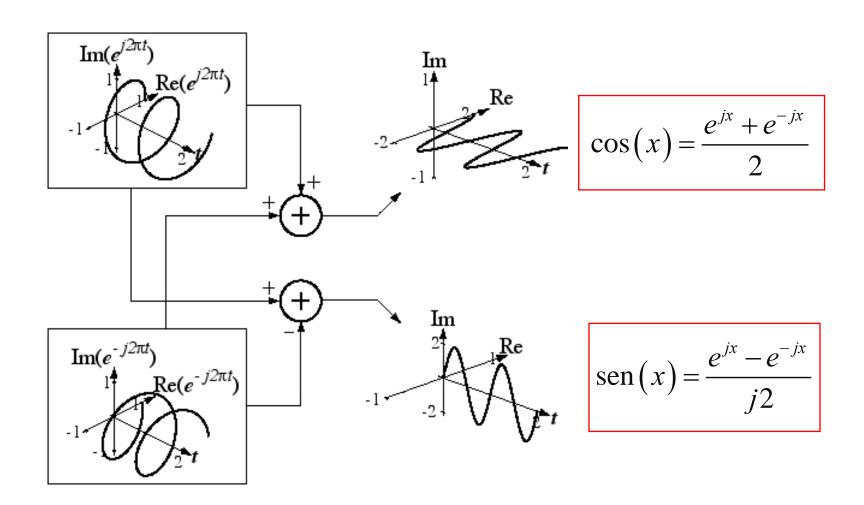
- Señal compleja
- $Re\{x(t)\}$  e  $Im\{x(t)\}$  son señales sinusoidales
- Periódica de periodo fundamental  $T_0$ =2 $\pi/|\omega|$ , fcia. fundamental  $f_0$ =1/ $T_0$
- Pulsación fundamental |ω|
- No causal
- Si  $\beta \neq 0 \Rightarrow$  Fase inicial no nula
- Armónicos:  $\phi_k(t) = e^{jk\omega t}$







## Sinusoides reales y complejas





## Señales exponenciales

**Exponencial compleja**  $a=r+j\omega$   $x(t)=A\cdot e^{(rt+j\omega t+j\beta)}=A\cdot e^{rt}\cdot e^{j(\omega t+\beta)}$ 

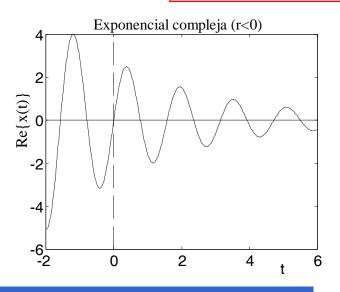
TRANSPARENCIA IMPORTANTISIMA

- Señal compleja
- Modulación de una exponencial imaginaria por otra real
- · No periódica
- Oscilaciones amortiguadas (*r*<0) o crecientes (*r*>0)

#### TRANSPARENCIA IMPORTANTISIMA

# 

#### TRANSPARENCIA IMPORTANTISIMA



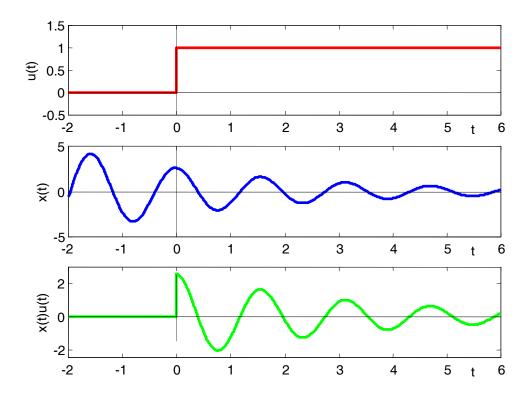


### Escalón unidad

### Señal escalón:

$$u(t) = \begin{cases} 0, & si \ t < 0 \\ 1, & si \ t > 0 \end{cases}$$

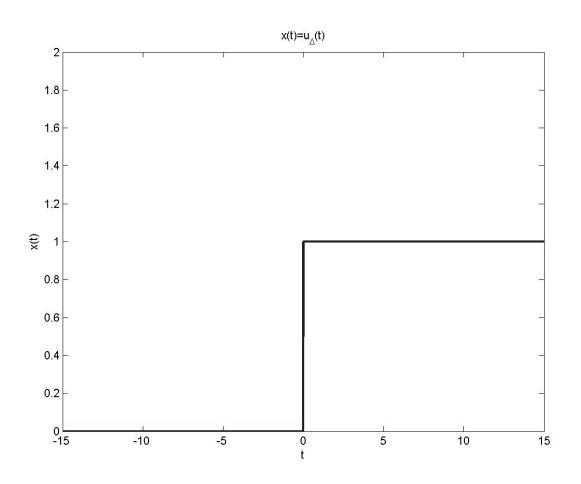
- Causal
- $x(t) \cdot u(t)$  es causal y coincide con x(t) para t>0





## Aproximación al escalón unidad

Aproximación  $u_{\Delta}(t)$  al escalón unitario continuo

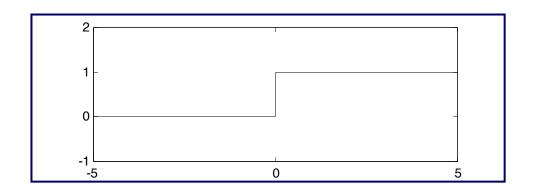




## Relación entre el escalón y el impulso unidad (I)

Señal escalón unidad: u(t)

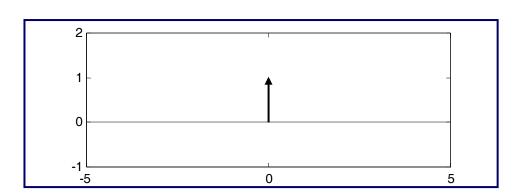
$$u(t) = \begin{cases} 0, & \text{si } t < 0 \\ 1, & \text{si } t > 0 \end{cases}$$



Señal impulso unidad:  $\delta(t)$  (o Delta de Dirac)

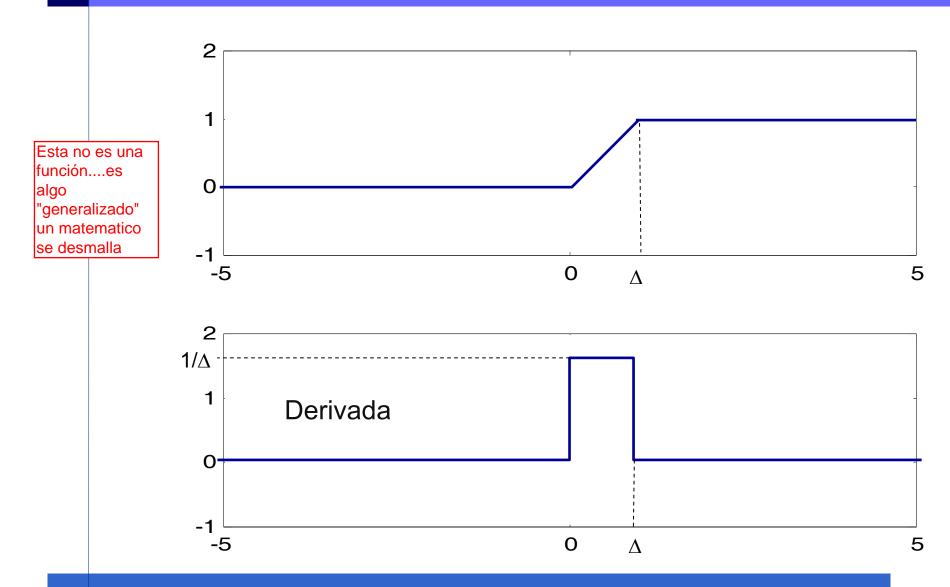
Esta no es una función....es algo "generalizado" un matematico se desmalla

$$\delta(t) = \frac{du(t)}{dt}$$





## Relación entre el escalón y el impulso unidad (II)

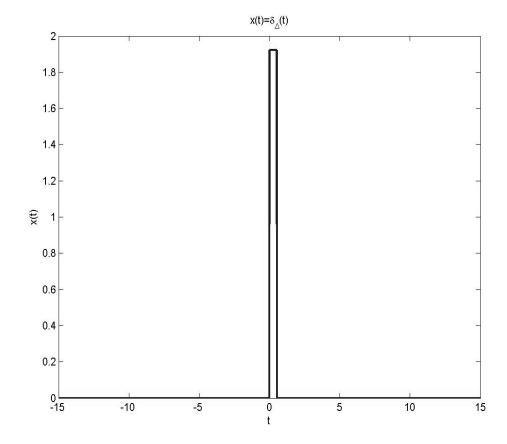




## Aproximación al impulso unidad

### Aproximación $\delta_{\Lambda}(t)$ al impulso unitario continuo

Esta no es una función....es algo "generalizado" un matematico se desmalla

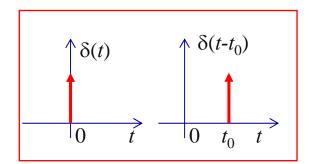




### Impulso unidad

### Señal impulso unidad o delta:

$$\int_{-\infty}^{t} \delta(\tau) d\tau = u(t) = \begin{cases} 0, & \text{si } t < 0 \\ 1, & \text{si } t > 0 \end{cases}$$



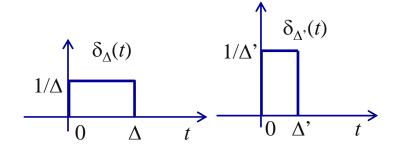
### Significado:

Esta no es una función....es algo "generalizado" un matematico se desmalla

- Función auxiliar  $\delta_{\Lambda}(t)$
- El área encerrada es 1
- Su integral desde -∞ hasta t es cero si t<0 ó 1 si t>1

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

$$\delta_{\Delta}(t) = \begin{cases} 0, & si \ t < 0 \\ 1/\Delta, & si \ 0 < t < 1/\Delta \\ 0, & si \ t > 1/\Delta \end{cases}$$





### Propiedades impulso unidad

TRANSPARENCIA IMPORTANTE

Propiedades de la función  $\delta(t)$ 

$$\int_{-\varepsilon}^{\varepsilon} \delta(\tau) d\tau = \int_{-\infty}^{\infty} \delta(\tau) d\tau = 1$$

$$\int_{-\infty}^{-\varepsilon} \delta(\tau) d\tau = \int_{\varepsilon}^{\infty} \delta(\tau) d\tau = 0$$

$$\int_{-\infty}^{\infty} \delta(t - \tau) d\tau = u(t)$$

$$x(t) \delta(t) = x(0) \delta(t)$$

$$x(t) \delta(t - t_0) = x(t_0) \delta(t - t_0)$$

$$\int_{-\varepsilon}^{\varepsilon} x(\tau) \delta(\tau) d\tau = \int_{-\infty}^{\infty} x(\tau) \delta(\tau) d\tau = x(0)$$

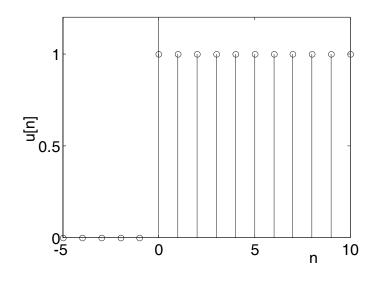


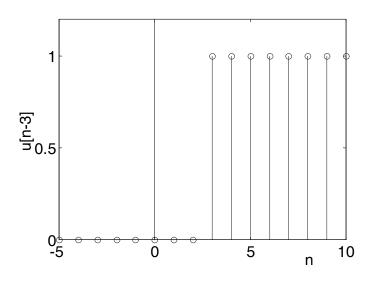
### Escalón unidad discreto

### Señal escalón:

$$u[n] = \begin{cases} 0, & si \ n < 0 \\ 1, & si \ n \ge 0 \end{cases}$$

- Causal
- $x[n] \cdot u[n]$  es causal y coincide con x[n] para  $n \ge 0$







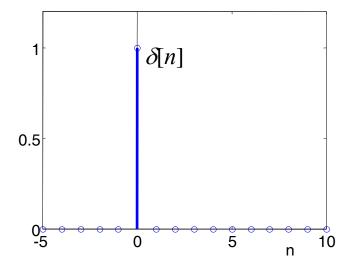
### Impulso unidad discreto

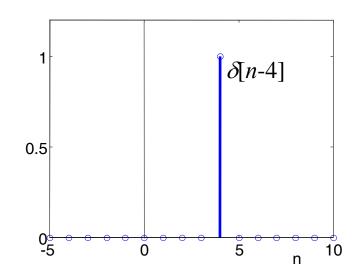
Señal impulso unidad:

$$\mathcal{S}[n] = \begin{cases} 1, & si \ n = 0 \\ 0, & si \ n \neq 0 \end{cases}$$

Esta funcion no da problemas

(o Delta de Kronecker) No presenta ninguna dificultad en su definición ni en su representación







### Propiedades impulso unidad

 $\Box$  Propiedades de la función  $\delta[n]$ 

TRANSPARENCIA IMPORTANTE

$$\sum_{k=-\infty}^{n} \delta[k] = \sum_{k=0}^{\infty} \delta[n-k] = u[n]$$

$$\delta[n] = u[n] - u[n-1]$$

$$\sum_{-N}^{N} \delta[n] = \sum_{-\infty}^{\infty} \delta[n] = \sum_{-\infty}^{\infty} \delta[n-n_0] = 1$$

$$\sum_{-N}^{N} \delta[n] = \sum_{-N}^{\infty} \delta[n] = 0 \quad (N > 0)$$

$$x[n]\delta[n] = x[0]\delta[n]$$

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$$

$$\sum_{-N}^{N} x[n]\delta[n] = \sum_{-\infty}^{\infty} x[n]\delta[n] = x[0]$$



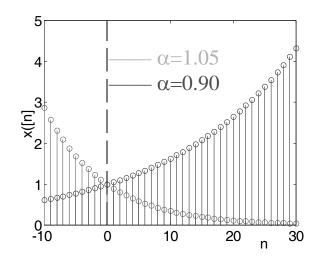
### **Exponencial discreta**

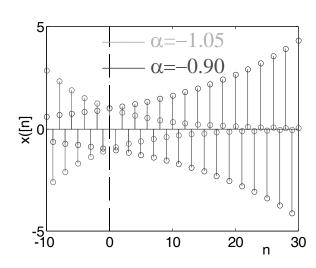
3.2.c) Señales exponenciales complejas de tiempo discreto:

$$x[n]=A\cdot\alpha^n$$
;  $A$ ,  $\alpha=e^{\beta}$  y  $\beta$  son números complejos

Se puede distinguir entre:

- i) Secuencia exponencial real: A y  $\alpha$  son reales
- ii) Secuencias sinusoidales  $|\alpha|=1$  ( $\alpha=e^{j\Omega}$ )
- iii) Secuencias con oscilaciones de amplitud variable  $|\alpha| \neq 1$ ,  $Im\{\alpha\} \neq 0$
- 3.2.c.i) Secuencia exponencial real (A=1 por simplicidad):







### Sinusoidal discreta

Secuencia sinusoidal  $|\alpha|=1$  ( $\alpha=e^{j\Omega}$ , A=1 por simplicidad):

$$x[n] = e^{j\Omega n}$$

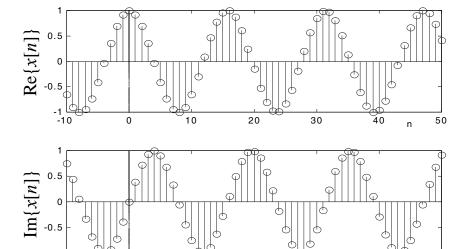
- Señal compleja  $(\text{Im}\{x[n]\}\neq 0)$
- Periodicidad:

$$x[n+N]=e^{[j\Omega(n+N)]}=e^{j\Omega n}\cdot e^{j\Omega N} \Rightarrow x[n+N]=x(n), \ \forall n\Leftrightarrow e^{j\Omega N}=1\Leftrightarrow \Omega N=2m\pi$$
  
Periódica  $\Leftrightarrow \Omega\cdot N=2m\pi$ 

Armónicos:  $\phi_k[n] = e^{jk\Omega n}$ ; sólo N diferentes

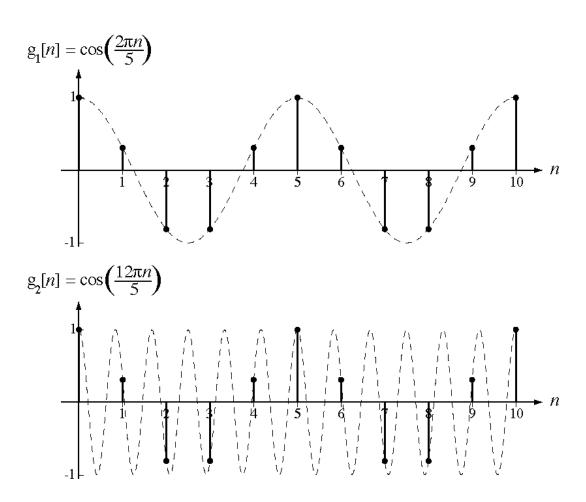
No causal

Para  $\Omega = 0.4 \neq 2m\pi/N$ 





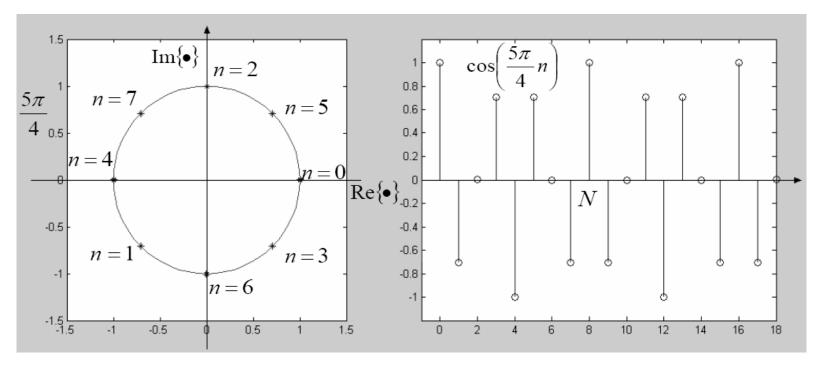
## Ejemplo de periodicidad discreta (I)





### Ejemplo de periodicidad discreta (II)

$$x[n] = e^{j\frac{5\pi}{4}n} = \cos(\frac{5\pi}{4}n) + j \cdot \sin(\frac{5\pi}{4}n)$$
$$\frac{N}{m} = \frac{2\pi}{\Omega} \to \frac{N}{m} = \frac{2\pi}{5\pi/4} \to N = 8, \qquad m = 5$$

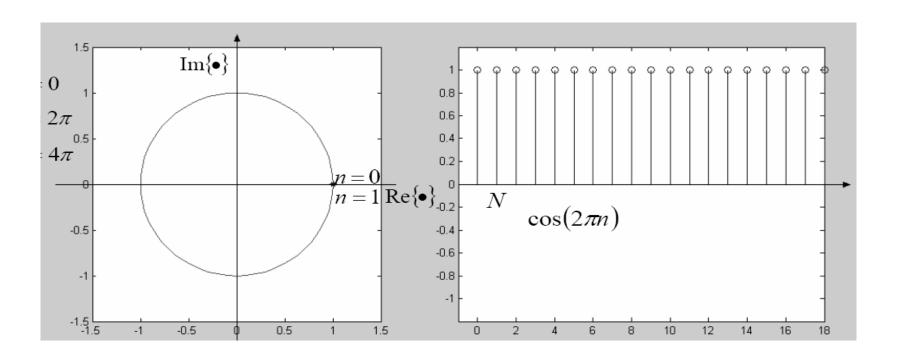




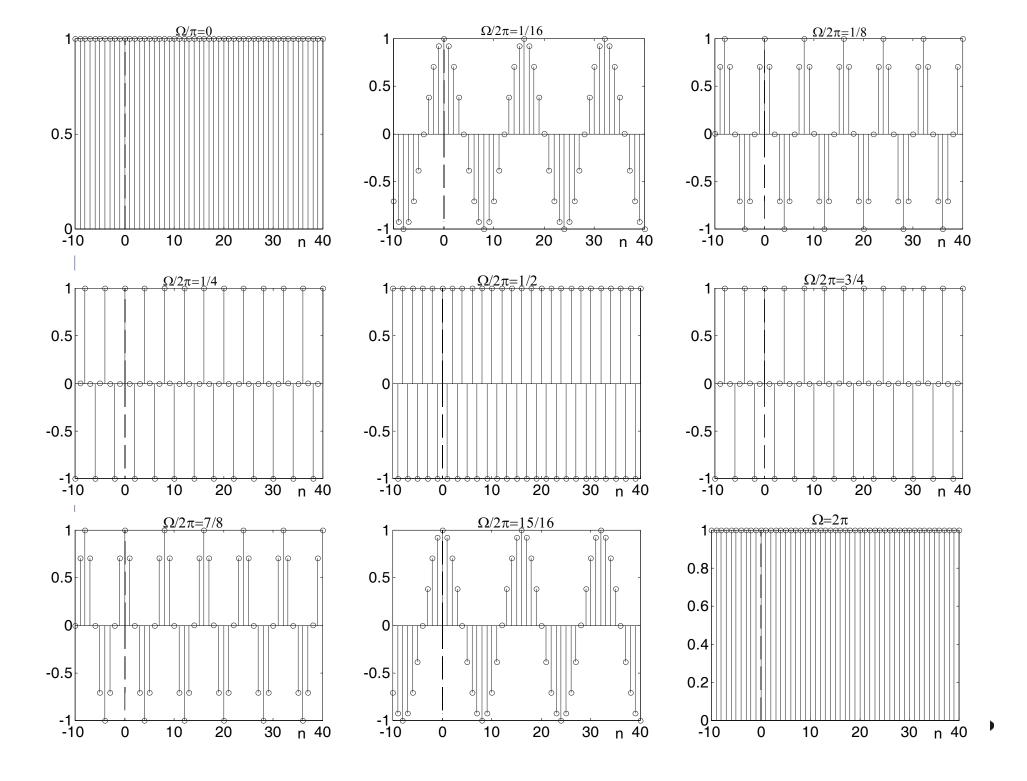
### Ejemplo de periodicidad discreta (III)

$$x[n] = e^{j2\pi n} = \cos(2\pi n) + j \cdot \sin(2\pi n)$$

$$\frac{N}{m} = \frac{2\pi}{\Omega} \to \frac{N}{m} = \frac{2\pi}{2\pi} \to N = 1, \qquad m = 1$$



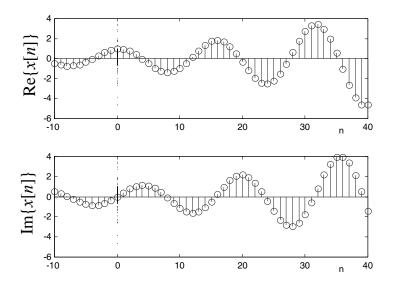


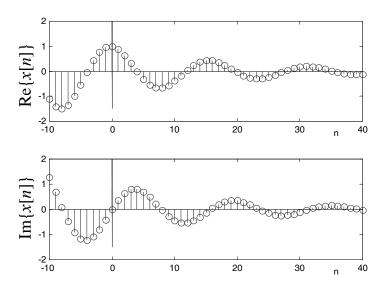


### Exponencial compleja discreta

Secuencia exponencial 
$$\alpha = |\alpha| e^{j\Omega}$$
,  $A = |A| \cdot e^{j\theta}$   
 $x[n] = A \cdot \alpha^n = |A| |\alpha|^n e^{(j\Omega n + j\theta)}$ 

- Señal compleja  $(\text{Im}\{x[n]\}\neq 0)$
- Oscilaciones que crecen si  $|\alpha|>1$  o se amortiguan si  $|\alpha|<1$
- No periódica
- No causal







## Comparación sinusoidales de tiempo continuo y discreto

### Tiempo continuo: $e^{j\omega_0 t}$

- Si  $\omega_0$  crece, la frecuencia aumenta
- Si  $\omega_0$  decrece, la frecuencia decrece
- Si ω₀≠ω'₀⇒ las señales son diferentes
- $e^{j\omega_0 t}$  es siempre periódica
- Periodo fundamental  $T_0=2\pi/|\omega_0|$
- Frecuencia fundamental  $f_0 = |\omega_0|/2\pi$
- Pulsación fundamental  $|\omega_0|$
- Infinitos armónicos diferentes

### Tiempo discreto: $e^{j\Omega_0 n}$

- Si  $\Omega_0$  crece, la frecuencia NO siempre aumenta
- Si  $\Omega_o$  decrece, la frecuencia NO siempre disminuye
- Si  $\Omega_0 = \Omega'_0 + 2k\pi \Rightarrow$  las señales son iguales:  $e^{j\left(\Omega'_0 + 2k\pi\right)n} = e^{j\Omega_0 n}$
- $e^{j\Omega_0 n}$  es periódica  $\Leftrightarrow \Omega_0 = 2m\pi/N$
- Si es periódica ⇒
  - \* Periodo fundamental  $N_0$ = $N ext{ si}$  $N ext{ y } m ext{ son primos entre si}$
  - \* Frecuencia fundamental  $f_0 = 1/N_0$
  - \* Pulsación fundamental  $2\pi f_0 = 2\pi/N_0$
  - \* Sólo  $N_0$  armónicos diferentes

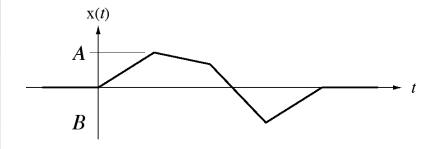


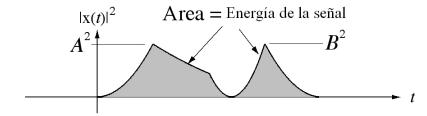
### 3.3. Energía y potencia de una señal

- Energía
  - Integral del módulo al cuadrado de la amplitud
- Potencia
  - Energía por unidad de tiempo
- Una señal con energía finita es una señal definida en energía
- Una señal con energía infinita y potencia finita es una señal definida en potencia



### Energía



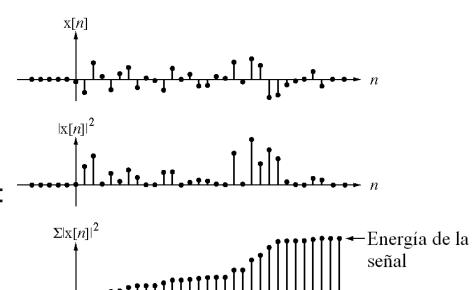


**Energía** de una señal discreta *x*[*n*]:

$$E_{x} = \sum_{n=-\infty}^{\infty} \left| \mathbf{x} \left[ n \right] \right|^{2}$$

**Energía** de una señal continua x(t):

$$E_{x} = \int_{-\infty}^{\infty} \left| \mathbf{x} \left( t \right) \right|^{2} dt$$





### Potencia

 Cuando la energía es infinita es más conveniente definir la potencia de la señal

|              | Continua                                                                                           | Discreta                                                                                                    |
|--------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Periódica    | $P_{x} = \frac{1}{T} \int_{T} \left  \mathbf{x} \left( t \right) \right ^{2} dt$                   | $P_{x} = \frac{1}{N} \sum_{n = \langle N \rangle}  \mathbf{x} [n] ^{2}$                                     |
| No Periódica | $P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}  \mathbf{x}(t) ^{2} dt$ | $P_{x} = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N-1} \left  \mathbf{x} \left[ n \right] \right ^{2}$ |



### **Síntesis**

#### 1. Señales:

- Tiempo continuo
- Tiempo discreto

#### 2.1. Transformaciones:

- Desplazamiento:  $x_1(t)=x(t-t_0)$ ;  $t_0$  real  $x_1[n]=x[n-n_0]$ ;  $n_0$  entero
- Reflexión:  $x_1(t)=x(-t)$  $x_1[n]=x[-n]$
- Cambio de escala:  $x_1(t)=x(a\cdot t)$  $x_1[n]=x[a\cdot n]$

### 2.2. Propiedades de la señal:

- Simetría: Par: x(t)=x(-t); x[n]=x[-n]Impar: x(t)=-x(-t); x[n]=-x[-n]
- Periódica:  $\exists T \in \mathcal{R}^+ t.q. \ x(t+T)=x(t), \ \forall t$  $\exists N \in \mathcal{Z}^+ t.q. \ x[n+N]=x[n], \ \forall n$
- •Causal: x(t)=0,  $\forall t<0$ ; x[n]=0,  $\forall n<0$

### 3. Señales básicas

- 3.1. Tiempo continuo:  $e^{(j\omega t)}$ ,  $A \cdot e^{(at+jbt)}$ , u(t),  $\delta(t)$
- 3.2. Tiempo discreto:  $u[n], \delta[n], A \cdot a^n, e^{(j\Omega n)}$
- 3.3 Energía y potencia de una señal:

| Continuo                                                                                           | Discreto                                                                                       |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| $E_{x} = \int_{-\infty}^{\infty} \left  \mathbf{x} \left( t \right) \right ^{2} dt$                | $E_{x} = \sum_{n=-\infty}^{\infty} \left  \mathbf{x} \left[ n \right] \right ^{2}$             |
| $P_{x} = \frac{1}{T} \int_{T} \left  \mathbf{x} \left( t \right) \right ^{2} dt$                   | $P_{x} = \frac{1}{N} \sum_{n = \langle N \rangle}  \mathbf{x} [n] ^{2}$                        |
| $P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}  \mathbf{x}(t) ^{2} dt$ | $P_{x} = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N-1} \left  \mathbf{x} [n] \right ^{2}$ |

